Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images

Enrico Magli, Mauro Barni, Andrea Abrardo, Marco Grangetto

Abstract

This paper deals with the application of distributed source coding (DSC) theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up to now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for lossless image compression carried on board a remote platform.

We first provide a brief overview of DSC of correlated information sources. We then focus on on-board lossless image compression, and apply DSC techniques in order to reduce the complexity of the on-board encoder, at the expense of the decoder's, by exploiting the correlation of different bands of a hyperspectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes employed as source codes, and one based on simple multilevel coset codes. The performance of both schemes is evaluated on a few AVIRIS scenes, and compared with other state-of-the-art 2-D and 3-D coders. Both schemes turn out to achieve competitive compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that are still to be solved to further improve the performance of DSC-based remote sensing systems.

1 Introduction

In recent years, distributed source coding (DSC) has received an increasing attention from the signal processing community as a new paradigm to code statistically dependent sources [1, 2].

DSC considers a situation in which two or more correlated1 data sources must be encoded by two separate encoders that are not allowed to talk to each other, i.e., each encoder sees only the output of one of the two sources. Following the standard encoding paradigm, each source can be compressed losslessly, with a total rate no less than the sum of the two source entropies. This is clearly less efficient than an encoder that jointly compresses the two sources, since in this latter case a bit rate equal to the joint entropy of the sources could be used. The surprising result of DSC theory [3, 4, 5] is that, under certain assumptions, the same result can be achieved by using two separate encoders, provided that the two sources are decoded by a joint decoder. For example, it is possible to perform standard encoding of the first source (called side information) at its entropy, and conditional encoding of the second one at a rate lower than its entropy; no information about the first source needs to be available at the second encoder, but only correlation parameters such as the conditional entropy. Interestingly, DSC coders are typically implemented using channel codes; conditional encoding is performed by representing the source using its syndrome (or the parity bits) of a suitable channel code. An overview of this process is given in Sect. 2.1.

1More precisely, DSC theory applies whenever the two sources are statistically dependent. In general, source dependency does not result in correlated sources, since dependency implies correlation only in the Gaussian case. Strictly speaking, then, we should pay attention to distinguish between dependent and correlated sources. However, being the Gaussian case by far the most common, we will use the terms “correlated” and “dependent” sources interchangeably, so not to unnecessarily complicate the mathematical notation.

1Andrea Abrardo and Mauro Barni are with Dip. di Ingegneria dell’Informazione, Università di Siena, Via Roma 56, 53100 Siena, Italy. Email: barni@abradio)@di.unisi.it. Enrico Magli and Marco Grangetto are with CERCOM (Center for Multimedia Radio Communications), Dip. di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24 - 10129 Torino, Italy. Email: enrico.magli@polimi.it. Corresponding author: Enrico Magli.
DSC theory can be immediately applied to all the cases where two or more correlated sources must be coded efficiently by separate encoders and decoded by a unique decoder, as is the case with distributed sensor network applications [1]. Less evident, but equally appealing, is the possibility of applying DSC principles to situations where a single source is artificially subdivided into correlated sub-sources that are encoded separately. In this case, the advantage is that decorrelation among the sub-sources is no longer required thus considerably simplifying the encoder (though at the expense of the decoder). Moreover, no communication between the sub-sources is required, at least in the ideal case, thus greatly reducing the communication bandwidth of the processing system. These concepts have a strong potential for remote sensing image compression; this application field has been devoted preliminary investigations in [6, 7, 8, 9]. In a remote sensing system, correlation among different images can be found at several different stages. Some potential applications include i) exploiting the correlation between two (or more) bands of a multispectral or hyperspectral image to achieve lower encoder complexity by avoiding explicit decorrelation, ii) exploiting the correlation between newly acquired and archived images, iii) exploiting the correlation between multimodal images, iv) exploiting the correlation between archived images to reduce storage space. The first application is the one dealt with in this paper.

Although several near-capacity DSC coders have been designed for simple ideal sources (e.g., Gaussian sources), the applications of practical DSC schemes to realistic signals have been so far quite limited, and have yielded somewhat controversial results. On one hand, the performance of practical systems is often further away from the theoretical bounds than in the ideal case due to various characteristics of the signal to be coded that do not fit the ideal model. On the other hand, the complexity required to achieve these results may outweigh the computational saving obtained by reducing the decorrelator complexity. Moreover, additional system-level requirements (such as the availability of a feedback channel) may be posed in order to make DSC feasible at all. These issues are discussed in more detail in Sect. 2.3.

The goal of this paper is to evaluate the performance of DSC coders in a realistic application environment, such as hyperspectral image compression. In particular, we design two DSC coders based on different principles, and assess the potential of either coder to accomplish the advantages of DSC, i.e. moving complexity from the encoder to the decoder by following an approach similar to that proposed in [10] for the compression of video sequences. The first codec employs powerful error-correcting codes, as is typically done in most existing DSC schemes; the second codec employs scalar multilevel coreset codes. Some parts of both coders borrow from existing schemes, while their integration in a compression algorithm for hyperspectral images presents a few innovative aspects. The new codecs have been tested on a set of scenes of the AVIRIS sensor, and the results have been compared with those achieved by some popular 2D and 3D compressions algorithms (JPEG-LS, 2D and 3D CALIC). The results we obtained provide useful insights about the challenges to be solved to effectively apply DSC principles to practical scenarios.

The remainder of the paper is organized as follows. In section 2 the basic results of DSC theory are presented and prior works attempting to turn these results into practical algorithms reviewed. In section 3, the first DSC codec we developed is described and its performance is discussed in section 4. A second algorithm, following an alternative approach with complementary advantages and drawbacks, is presented in section 5 and the corresponding experimental analysis is given in section 6. The paper ends with section 7, where some conclusions are drawn and directions for future research indicated.

2 Distributed source coding: overview and state-of-the-art

2.1 Overview of syndrome-based coding

We consider two correlated information sequences \(\ldots, X_{-1}, X_0, X_1, \ldots\) and \(\ldots, Y_{-1}, Y_0, Y_1, \ldots\) obtained by repeated independent drawing from a discrete bivariate distribution \(p(x, y)\). We denote these sequences as \(X = \{X_k\}_{k=-\infty}^{\infty}\) and \(Y = \{Y_k\}_{k=-\infty}^{\infty}\). If two separate encoders are used, the total rate required to represent the two sources exactly is \(R_{\text{tot}} = R_X + R_Y \geq H(X) + H(Y)\), where \(H(\cdot)\) denotes entropy. If the inter-source correlation were exploited, e.g. by means of a joint encoder
that provides a single description of both X and Y, the total rate would be lower-bounded by the joint entropy, i.e. $R_{opt} \geq H(X, Y)$. In DSC, two separate encoders generate descriptions of X and Y, and a joint decoder reconstructs the pair of signals. Slepian and Wolf have shown [3] that, somewhat surprisingly, such scheme can theoretically achieve the same asymptotic performance as the joint scheme.

In most existing DSC schemes, this is achieved by means of “binning”. To explain this concept, let us assume that X and Y are binary strings, and that the block size is not infinity but a given n. The set of 2^n possible values assumed by X can be partitioned into 2^{n-k} cosets C_i, $i = 1, \ldots, 2^{n-k}$, containing 2^k elements each; k is chosen so that $\frac{2^n}{2^k} \geq H(X|Y)$. When the encoder receives a signal X, it seeks the coset C^* to which X belongs. Instead of coding X at rate $H(X)$, the encoder sends the label that identifies C^*; this requires $n-k$ bits. The joint decoder compares the elements in C^* with the side information Y, and picks as estimate X^* the element of C^* that is closest to Y. Note that designing such coset code requires prior knowledge of $H(X|Y)$; in practice this may be an issue.

Typically, the input alphabet is partitioned by means of a linear channel code, in such a way that all messages with the same syndrome (here playing the role of coset label) are assigned to the same coset. Syndrome-based coding of a binary source X involves the use of an (n, k) linear channel code with $(n-k) \times n$ parity-check matrix H. Using this channel code for error correction, the length-k message X is transformed into a length-n message X' by appending $n-k$ parity bits to X. Using it as source code, the message X has length n, and $n-k$ syndrome bits are computed as $S = HX$. The channel code rate is defined as k/n, whereas the obtained compression ratio is $n/(n-k)$.

2.2 Prior work

Several practical techniques have been proposed for Slepian-Wolf (S-W) and Wyner-Ziv coding of Gaussian sources. If the sources are not i.i.d. in the sense of Sect. 2.1, a decorrelator must be applied. The distributed Karhunen-Loeve transform [11] is the optimal decorrelator; however, in practice standard transforms and predictors have been used in all existing works, due to the difficulty of modeling the inter-source correlation as required by the optimal transform. As for the coding stage, it has been shown (see e.g. [12]) that channel codes that are able to get very close to channel capacity are good candidates for S-W coding. The intuition is that, if the correlation between X and Y can be modeled as a “virtual” channel described as $X = Y + W$, a good channel code for that transmission problem is also expected to be a good S-W source code. Therefore, S-W coding is generally carried out by employing the cosets of good linear block or convolutional codes. In the lossy case, a quantizer is also employed to set the distortion, followed by a S-W entropy coder. The first practical technique has been described in [13], and employs trellis-coded quantization and trellis channel codes. Recently, more powerful channel codes such as turbo-codes have been proposed in [14, 15, 2], and low-density parity-check (LDPC) codes have been used in [16]. Note that the constituent codes of turbo-codes are convolutional codes, hence the syndrome is difficult to compute. In [2] the cosets are formed by all messages that produce the same parity bits, even though this approach is somewhat suboptimal [15], as these cosets do not have as good geometrical properties as those of syndrome-based coding. Turbo-codes and LDPC codes can get extremely close to channel capacity, although they require the block size n to be rather large.

Multilevel codes, i.e., codes working on alphabets of size larger than two, have also been proposed [17] in order to exploit the correlation between the multiple binary sources, e.g., bit-planes, that can be obtained from a multilevel source.

In addition to coding of Gaussian signals, a few applications to real-world data have also been proposed. In [10] the trellis-based construction of [13] is applied to the video coding problem. The idea is to consider every video frame as a different source; DSC allows to encode the video without performing motion estimation at the encoder, as in Motion JPEG, with performance similar to a video coder that performs interframe decorrelation. Hence, this scheme reverses the classical video coding paradigm, by requiring a light encoder and a complex (joint) decoder. Similar ideas have been proposed in [2] using turbo codes. In [18] a Wyner-Ziv image coding technique working in the
2.3 Technical challenges

Although DSC coders based on channel coders have been shown to achieve near-optimal performance on ideal sources, the performance loss turns out to be significant on real-world data. There are several assumptions of DSC theory that are only partially satisfied by practical coders; two of them are outlined in the following, and will be discussed later on with the aid of experimental results.

Most channel codes used in syndrome-based coding are optimized for binary data, whereas typical signals are multilevel sources. Binary channel codes can be applied to 16-bit data, like most hyperspectral data, by means of a bit-plane approach; however, this approach does not exploit the inter-bit-plane correlation. Therefore, there is some performance loss to be expected by neglecting this correlation. As will be seen, we have found this loss to be significant.

The conditional entropy $H(X|Y)$, which determines the rate of the code to be used for X, is assumed to be known at the encoder. This assumption causes a few practical problems. Ignoring $H(X|Y)$ requires some additional mechanism to ensure that the correct code rate has been selected. For example, in [2] a feedback channel is set up between the video encoder and decoder; punctured codes are used, and a cyclic redundancy code (CRC) is also sent to allow for detection of decoding errors. The decoder requests additional parity bits until it achieves error-free decoding. If the two signals X and Y are not physically separated, but are stored in the same memory, some inter-band communication may be necessary in order to estimate $H(X|Y)$; if this communication does not outweigh the cost of explicit decorrelation, then it makes sense to apply DSC in order to decrease the encoder complexity at the expense of the decoder’s.

2.4 Two proof-of-concept codecs

It is evident from the above discussion that the practical application of DSC principles is not straightforward, and several issues have to be taken into account. The most common DSC designs are based on capacity-achieving channel codes, such as LDPC [26, 27] and turbo-codes [28, 2]. Irregular LDPC codes are known to almost reach channel capacity; when used as entropy coders in the DSC scenario, they are expected to provide a bit-rate reasonably close to the conditional entropy of the source given the side information. However, LDPC codes are so powerful only when the data block size is very large, e.g. in excess of ten thousand samples, or even more; this could make the encoding process computationally demanding, possibly outweighing the benefits of DSC.

Scalar codes are at the other end of the spectrum. These codes are much less powerful because they operate sample by sample; however, the encoding and decoding processes are much simpler, which is a good fit to the DSC scenario. Moreover, unlike LDPC codes, it is easy to design a scalar multilevel code, as opposed to a binary one.

In the following sections we present and compare two different DSC algorithms, based on either approach. In particular, the first algorithm, described in Sect. 3, employs LDPC codes as S-W codes; its performance evaluation is reported in Sect. 4. The second algorithm, based on scalar
3 A DSC scheme for hyperspectral images based on capacity-achieving codes

The algorithm described in the following is called DSC-CALIC; it combines the 2D prediction stage of CALIC [29] with a S-W entropy coder to exploit inter-band redundancies. The S-W entropy coder is based on the syndrome-based channel coding using LDPC codes, similarly to what has been proposed in [16]; the coder is improved by the selective use of the channel code and an arithmetic coder.

As for the prediction stage, CALIC employs a non-linear gradient-adjusted prediction that uses seven adjacent pixels in the neighborhood of the pixel to be encoded. Since this algorithm is well-known, the reader is referred to [29] for further details.

Fig. 1 sketches a block diagram of the proposed encoder. Let \(X \) and \(Y \) be respectively the current (to be coded) and previous (already coded) bands of a hyperspectral scene.

First, the CALIC encoder is applied to \(X \) in order to generate the prediction error array \(E_X \), which is ideally a zero-mean stationary memoryless source. The prediction error of the previous band, \(Y \), is available from the encoding process of the previous band, and can be used as side information at the decoder.

The next step aims at "improving" the side information for the decoder. Specifically, we employ a linear correlation model, such as \(E'_X = \alpha E_Y \), to obtain a modified side information \(E'_Y \) that is closer to \(E_X \). The parameter \(\alpha \) is obtained imposing that \(E'_Y \) and \(E_X \) have the same energy:

\[
E'_Y = \text{round}(\alpha E_Y)
\]

with

\[
\alpha = \frac{\sum_{i=1}^{N} (E_{X,i})^2}{\sum_{i=1}^{N} (E_{Y,i})^2}
\]

where \(E_{X,i} \) and \(E_{Y,i} \), with \(i = 1, \ldots, N \) are all the prediction error samples contained in the band being coded, and \(\text{round}(\cdot) \) denotes rounding off to the nearest integer. The operator \(\mathbb{Q}[\cdot] \) denotes scalar quantization; in fact, a 16-bit quantized version of \(\alpha \) is employed, and is written in the compressed file to facilitate decoding.

After computing \(\alpha \), the actual encoding process takes place. In particular, the encoder decomposes the prediction error array \(E_X \) into its bit-planes \(E^{(b)}_{X,i} \), with \(0 \leq i \leq \log_2(\max|E_{X,1}|) \), plus an additional bit-plane containing the signs of the samples. Specifically, \(E^{(b)}_{X,i} \) is the \(i \)-th bitplane of \(E_X \), and the superscript simply indicates that the data array is binary; its entropy is denoted as \(H_i = H(E^{(b)}_{X,i}) \). The equivalent bit-plane \(E^{(b)}_{Y,i} \) will be used as side information for decoding. For each bit-plane, the conditional entropy \(H_{c,i} = H(E^{(b)}_{X,i}|E^{(b)}_{Y,i}) \) is assumed to be known.

For each bit-plane \(E^{(b)}_{X,i} \), the encoder selects one out of two possible coding modes, i.e. 1) encode the current bit-plane employing the DSC mode with syndrome-based coding, and 2) encode the current bit-plane using an arithmetic coder. Mode 2 is typically used when DSC is not efficient for a given bit-plane, whereas mode 1 is employed the majority of times. Mode 1 exploits the fact that DSC theory ensures that each bit-plane \(E^{(b)}_{X,i} \), regarded as a binary source, can be transmitted at a rate \(R_i \geq H_{c,i} \). In practice, mode 1 triggers the LDPC encoder and performs syndrome-based coding of the bit-plane \(E^{(b)}_{X,i} \). The syndrome \(S_i \) of the array \(E^{(b)}_{X,i} \) is computed using a LDPC code of suitable rate, and is written in the compressed file; we select in the available database the LDPC code with highest rate, whose syndrome is no smaller than \(H_{c,i} \times N \) bits.

In particular, we use irregular LDPC codes [26, 30] with belief-propagation decoding. A database of 100 codes with code rates between 0.01 and 0.95 has been desinged based on the density evolution optimization technique described in [31], for a block size of \(N = 157184 \) bits (the block size is obtained as the product of the number of lines that we code as one entity, i.e. 256,
times the number of pixels per line). This size corresponds to a bit-plane obtained scanning in raster order all pixels of 256 lines of an AVIRIS scene. A scene containing 512 lines can be encoded in two runs; since the coding process is lossless, there is no need to worry about possible boundary artifacts caused by tiling. The performance gap of these codes with respect to ideal S-W coding is between 0.001 and 0.07 b/p.

Mode 2, which is based on the CACM [32] arithmetic coder, is used in a few specific cases:

- For all the bit-planes of a few bands, for which it has been found experimentally that DSC provides little or no advantage with respect to classical 2D coding. These bands are typically the noisiest ones, e.g. those corresponding to the water absorption region. Bands from 1 to 4, from 107 to 114 and from 153 to 169 are quite critical for DSC, because the difference between the entropy and the conditional entropy is very small, typically less than 0.1 b/p. Hence, mode 1 has been disabled for all bit-planes belonging to those bands (more on this in Sect. 4). For the first band this intra-band coding mode is also dictated by the fact that no side information is available.

- For all the bit-planes for which \(H_t < 0.01 \) or \(H_{c,i} > 0.95 \), because our code database does not contain any LDPC code that would outperform an arithmetic coder in those cases. The case of \(H_t < 0.01 \) is typical of a few most significant bit-planes, in which most of the bits are zero, while the case \(H_{c,i} > 0.95 \) is typical of the least significant bit-planes, which are very noisy and hence very difficult to compress.

Mode selection requires one bit of signalling per bit-plane per block, which represents a negligible overhead given the large block size (the worst case is about 1 \(\cdot 10^{-4} \) bpp). In terms of complexity, mode selection requires estimating the entropy and the conditional entropy of each bit-plane. The conditional entropy would have to be estimated in any case in order to select the LDPC code rate; the entropy can be easily derived from the conditional entropy, hence mode selection does not generate a significant complexity overhead.

3.1 DSC-CALIC decoder

The decoding process works as follows. For each band, the side information \(E_Y^1 \) is generated by multiplying the prediction error of the last decoded band \(E_Y \) by \(a \) and rounding to the nearest integer, as in Eq. (1). Then, the side information bit-planes \(E_Y^{(b)} \) are extracted.

The decoding process is different according to whether mode 1 or mode 2 have been used by the encoder. If mode 2 has been used, as many bits as are necessary to the arithmetic decoder to output \(N \) samples are read, and the next bit-plane is processed.

If mode 1 has been used, the decoder runs the iterative message-passing LDPC decoding algorithm, with no more than 100 iterations, to recover bit-plane \(E_{X_i}^{(b)} \). In particular, the LDPC decoder takes as inputs the log-likelihood ratios (LLR) of \(E_{X_i}^{(b)} \), the received syndrome of \(E_{X_i} \), and
the side information $E^{(b)}_Y$, and performs syndrome-based decoding of $E^{(b)}_X$, attempting to converge to an estimated message having exactly the received syndrome S_i (see [27] for details of the LDPC decoding process).

At the heart of the decoding process are the LLRs for decoder initialization. In typical channel coding applications these LLRs are computed assuming a given channel model, e.g. a binary symmetric channel with known crossover probability. For this binary channel, knowing the crossover probability is a requirement of most soft decoding techniques, and in particular of the belief-propagation decoders of turbo-codes and LDPC codes, that require it in order to compute posterior probabilities to initialize the iterative decoding process. However, this binary symmetric model turns out to be a poor match to the DSC scenario. The reason lies in the fact that the most significant bit-planes contain mostly zeros, and the probabilities that a zero in the side information becomes a one in the signal, and vice versa, are not equal. Hence, we employ an asymmetric channel model in which these probabilities are allowed to be different; denoting as x and y the channel output and input respectively (i.e., the signal and side information), the LLRs are defined as follows:

$$LLR_x = \frac{P(x = 1|y)}{P(x = 0|y)} \quad \text{with} \quad y = 0, 1$$

and they are estimated considering the transmission of the bit-planes $E^{(b)}_Y$ through a binary asymmetric channel with the following transition matrix:

$$\begin{bmatrix}
1 - p_i & p_i \\
q_i & 1 - q_i
\end{bmatrix}$$

where $p_i = P(x_i = 1|y_i = 0)$ and $q_i = P(x_i = 0|y_i = 1)$ are assumed to be known\(^2\). The channel output is represented by the bit-planes $E^{(b)}_X$. For this binary channel, the LLRs can be written as

$$LLR_x = \frac{P(x = 1|y)}{P(x = 0|y)} = \begin{cases}
\frac{p_i}{q_i} & \text{if } y = 0 \\
\frac{q_i}{p_i} & \text{if } y = 1
\end{cases}$$

All the decoded bit-planes $E^{(b)}_X$ are grouped together and the original prediction error array E_X is reconstructed. Finally, the decoder applies to E_X the CALIC inverse decorrelator to generate the losslessly decoded source X.

4 Experimental results - Part 1

4.1 Discussion

Before providing compression results on AVIRIS data, it is worth recalling and discussing a few assumptions that have been made in the implementation of DSC-CALIC.

The first assumption is that the entropy $H_{c,i}$ of each bit-plane is available. In DSC theory, $H(X|Y)$ is assumed to be known at the encoder of X; this conditional entropy is a measure of how much X and Y are correlated, and is needed to select the correct degree of redundancy for the S-W coder, and in practice the channel code rate of the employed LDPC code. This is a known issue in the literature, that has to be coped with. For DSC-CALIC, we assume that $H_{c,i}$ is given for every bit-plane, and in practice it is computed from the data. To avoid this, one can e.g. let the sources communicate; this is what has been done in the second algorithm, described in Sect. 5. As long as the complexity of this communication is negligible, the advantages of DSC are not endangered. Otherwise, if at all possible, one can set up a feedback channel as in [2] and use punctured codes; the decoder tells the encoder to send more parity bits until decoding is correct. More recently, probability models have been proposed for estimating the entropy and

\(^2\)These probabilities can be computed by the encoder and written in the compressed file with negligible overhead. They could also be estimated by the decoder from previously decoded data, though this option has not been investigated in this paper.
other relevant probabilities with limited or no inter-source communication [33]. It should be noted that this is still an open problem in the DSC literature, and that no totally satisfactory solution has been proposed so far. Related to this problem is the issue of computing the LLRs for the LDPC decoder. If the binary symmetric channel model is employed, the crossover probability must be known, while the asymmetric model requires p_i and q_i. This is another known issue, and most existing DSC techniques assume that these probabilities are known exactly; statistical estimation of these parameters could be carried out (e.g., by simply using the probabilities of the previous bit-plane, which has already been decoded), but this goes beyond the scope of this paper.

While performing channel decoding, one should check whether the decoder converged to the correct codeword, or there are some uncorrected errors. For irregular LDPC codes, if the code is slightly more powerful than necessary, as is done in DSC-CALIC, there should be no residual errors. In fact, during our experiments the first available code whose syndrome size is larger than $H_{c,1} \cdot N$ always decoded the signal without errors. Moreover, it is worth noticing that the convergence (or divergence) of the belief-propagation LDPC decoding process is a good (though not perfect) indicator of whether the decoding is correct, i.e. the decoder has some built-in error detection capability. However, it is possible that, if not all the codes employed are equally efficient, or if some bit-planes have unusually high bit-error rate, residual errors occur after S-W decoding. The set of codes we have employed are not rate-compatible, hence it is not possible to just send more parity bits, as would be instead possible with turbo codes [2]; this is a price to pay for the higher coding efficiency of LDPC codes. We have attempted to use bit-doping, i.e. sending more systematic bits and modifying the decoder LLRs accordingly; this strategy has turned out to be poorly matched to syndrome decoding, because too many such bits are required to make the decoding process successful. For error detection purposes, if an arbitrarily high degree of confidence is required, a CRC code can be appended to the coded bit-plane data. The CRC allows to detect decoding errors with very high probability, and the data block size is so large that the overhead due to the CRC is negligible. However, a rate-compatible code would then be required in order to avoid resending the whole bit-plane with a more powerful code. It would be necessary to switch to a rate-compatible (but less powerful) LDPC code, or to employ a different class of codes that are rate-compatible. This issue has been left for further work.

As far as complexity is concerned, the following remarks are in order. It is known that the encoding complexity of LDPC codes is $O(N^2)$ [34], even though the basic operations are very simple, as they are sums in modulo-2 arithmetic. The $O(N^2)$ behavior makes the encoder complexity relatively large, and may outweigh the benefits of the DSC encoder in terms of complexity. In [34] it is noted that, however, the actual encoder complexity is quasi-linear in N; e.g., for a (3,6) regular code, the number of operations can be shown to be no more than $0.0172N^2 + O(N)$. Moreover, irregular LDPC codes can be optimized so that the encoder complexity is linear. In the present work we have decided that DSC-CALIC should not be overly concerned with complexity, but that the most efficient available codes should be used. This choice reflects the typical DSC coder designs, and allows to assess the performance loss of a practical scheme from the theoretical bounds. As will be seen in Sect. 4.2, comparison between the performance of DSC-CALIC and the binary and multilevel entropies allows to draw useful indications regarding the causes of performance loss, as well as the possible remedies. As a consequence, the encoding time of our software encoder is larger than that of 3D-CALIC, although it could be made significantly lower by careful optimization of the set of parity check matrices.

4.2 Compression of AVIRIS images

In the following we provide compression results for DSC-CALIC, and compare it with other state-of-the-art 2D and 3D coders. The tests are performed on the 16-bit radiance data of a few AVIRIS scenes acquired in 1997; in particular, the first 256 lines (with all bands) of scene 1 of the Capitale, Lunar Lake and Jasper Ridge images have been used. The AVIRIS sensor is able to achieve a spectral resolution of about 10nm in the Visible-InfraRed range (400 ÷ 2500nm), thus yielding 224 highly correlated bands. We employ the publicly available radiometrically corrected radiance data, which are represented on 16 b/p, although the raw sensor data only have 12 b/p. Since both
scalar and vector codecs consider one pair of bands at a time. For all the algorithms considered in this paper, the data are assumed to be available in band-sequential (BSQ) format.

The following algorithms have been compared. JPEG-LS [35] has been considered, as it is an efficient and low-complexity technique. 2D-CALIC [29] and 3D-CALIC [36] are more complex, but provide state-of-the-art performance. Specifically, 2D-CALIC and JPEG-LS are two examples of codecs exploiting only intra-band correlation, whereas 3D-CALIC performs both spatial and spectral decorrelation of the hyperspectral cube.

The technique labelled as “B-iDSC-CALIC” is a version of DSC-CALIC in which S-W coding is ideal, i.e. assuming that the S-W coder employs a bit-rate exactly equal to the conditional entropy; the initial letter “B” indicates that S-W coding is binary. A practical S-W coder, such as DSC-CALIC, can not achieve a rate smaller than the conditional entropy, i.e. smaller than that of B-iDSC-CALIC, in the same way as a Huffman or arithmetic coder can not achieve a rate smaller than the source entropy. As a consequence, B-iDSC-CALIC can be used to evaluate the performance loss of the practical LDPC-based S-W encoder with respect to the ideal case.

Similarly, the technique labelled as “M-iDSC-CALIC” assumes ideal S-W coding; however, in this case, the entropy is not computed considering bit-planes as binary sources and summing their entropies, hence disregarding the correlation among different bit-planes. Rather, we consider the complete multilevel source, with an alphabet containing 2^{18} symbols, and compute the frequency of occurrence of each symbol. The multilevel entropy represent the performance bound for a multilevel as opposed to a binary S-W coder.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>Capricorn</th>
<th>Lunar</th>
<th>Jasper</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG-LS</td>
<td>6.78</td>
<td>6.98</td>
<td>7.58</td>
<td>7.11</td>
</tr>
<tr>
<td>2D-CALIC</td>
<td>6.61</td>
<td>6.84</td>
<td>7.43</td>
<td>6.96</td>
</tr>
<tr>
<td>3D-CALIC</td>
<td>5.11</td>
<td>5.25</td>
<td>5.13</td>
<td>5.16</td>
</tr>
<tr>
<td>DSC-CALIC</td>
<td>5.99</td>
<td>6.22</td>
<td>6.37</td>
<td>6.19</td>
</tr>
<tr>
<td>B-iDSC-CALIC</td>
<td>5.94</td>
<td>6.17</td>
<td>6.31</td>
<td>6.14</td>
</tr>
<tr>
<td>M-iDSC-CALIC</td>
<td>5.12</td>
<td>5.21</td>
<td>5.13</td>
<td>5.15</td>
</tr>
</tbody>
</table>

The results are reported in Tab. 1. As can be seen, DSC-CALIC obtains significantly lower bit-rates than all 2D coding techniques, and in particular is on average 0.77 b/p better than 2D CALIC and 0.92 b/p better than JPEG-LS, notwithstanding that DSC-CALIC does not perform context modeling, which amounts to a performance loss of about 0.2 b/p.

Comparing DSC-CALIC and iDSC-CALIC, it can also be seen that the proposed S-W coder is very efficient, in that it is only about 0.05 bit worse that an ideal bit-plane-based S-W coder.

Comparing iDSC-CALIC and 3D-CALIC, it can be seen that even the ideal S-W coder falls short of the theoretical bounds, in that there is still a gap with respect to a 3D technique. Part of this gap is due to the context modeling in 3D-CALIC, which adaptively captures spatial and spectral features, and does not neglect correlation between different bit-planes. This can be further explained by looking at the entropies for multilevel S-W coding. Although the average multilevel entropy for each band is only slightly less than the binary entropy (0.08 b/p), the multilevel conditional entropy is 1 b/p lower than the binary one. This is the reason why 3D-CALIC can get extremely close to the multilevel entropy, while DSC-CALIC and iDSC-CALIC are 1 b/p away. The difference between the binary and multilevel conditional entropies highlight a limit of binary S-W coders, which are not able to capture all the correlation in the data. Although DSC-CALIC is extremely close to iDSC-CALIC, significantly better performance could be obtained by using a multilevel coder, or at least a binary coder whose posterior probabilities are computed taking into account the already decoded bit-planes. In fact, as will be seen in Sect. 6, a scalar multilevel coder may achieve performance as good as a capacity-achieving binary code, with much lower complexity.
5 Spatially adaptive DSC of hyperspectral images

To develop the DSC coder described in the previous section, we assumed that the quantity $H(X|Y)$ is known. A possible solution could be to estimate $H(X|Y)$ “on the fly”, however this may require too much communication between image bands. The problem is further complicated by the observation that image bands can not be modelled as stationary sources hence calling for an adaptive estimation of $H(X|Y)$.

In this section we present a second DSC codec that tackles the above problem by relying on a completely different strategy than DSC-CALIC. First of all, we allow the encoder to compare two consecutive image bands, say X and Y. However such a comparison is kept as simple as possible, thus permitting to achieve a considerable gain in terms of encoder simplicity, at the expense of a symmetric complication of the decoder. Secondly, we adopt a block-based approach that, by splitting the image bands into small parts, allows to finely adapt the estimation of image dependency. This forces us to use codes having a small length, thus tending to reduce the effectiveness of the system. As it will be shown in the next section, though, the benefits brought by adaptivity outperform the coding loss, thus permitting to achieve rather good coding efficiency.

In order to describe the DSC codec, let us focus on two consecutive bands X and Y. We assume that Y has already been coded losslessly and hence it is available at the decoder. To see how X can be coded, let us assume that a model P permitting to predict the value of the pixels in X from those of Y is known (we will remove such an assumption later on), i.e. the value of each pixel $x(i,j)$ in X can be written as

$$x(i,j) = P(y(i,j)) + n(i,j) \quad (2)$$

where $n(i,j)$ is called correlation noise, and $y(i,j)$ is the value of the pixel in Y. Of course using a scalar predictor as in equation (2) is not an optimum choice, however we opted for it in order to maximize the simplicity of the encoder. We also assume that the statistics of $n(i,j)$ are known. The value of the pixels in X is coded by retaining only the k least significant bits of $x(i,j)$, where the exact value of k depends on the correlation between the bands, i.e. on the statistics of n. Note that these k least significant bits (LSB) can be seen as the index i' of the coset $x(i,j)$ belongs to. Specifically, each coset is formed by all the grey levels with the same LSBs, and each codeword in the coset is characterized by the particular values assumed by the most significant bits (MSB).

The decoder will have to resolve this ambiguity by recovering the LSBs on the basis of the side information Y. Specifically, it chooses the most significant bits so to minimize the distance between the reconstructed pixel value and the predicted value $P(y(i,j))$. If the number of transmitted bits is chosen properly no reconstruction loss is incurred.

The main problem with the above implementation is that the model P and the statistics of $n(i,j)$ are not known, and, in any case, are not stationary quantities. To get around the problem, the availability of Y at the encoder is exploited. Note that being our final aim that of reducing the complexity of the encoder, the availability of Y can still be exploited, as long as we do not increase the encoder complexity. Specifically, we first split X into non-overlapping blocks of size $n \times m$. Then, for each block, a rough estimate of the maximum value of $n(i,j)$ is computed, and used to decide the number of bits that can be discarded while coding the pixels of the block.

In addition to the least significant bits of X, the encoder computes some parity check bits by applying a CRC code to the values of the pixels in the block (the reason for the introduction of the CRC bits will be explained below). Finally, the encoder specifies the number of least significant bits actually stored. The exact content of the coded bit stream is summarized in figure 2.

Since the encoder does not know the particular P used by the encoder, it considers several predictors obtaining, for each pixel, a set of n_p possible predicted values

$$\hat{x}(i,j) = P_l(y(i,j)), \quad l = 1 \ldots n_p. \quad (3)$$
When the MSBs of the predicted values are combined with the least significant bits of \(x(i, j) \), \(n_p \) possible reconstructed values are obtained. The decoder uses the CRC bits computed by the encoder to choose the right predictor. In particular it looks for a \(\mathcal{P} \) for which the reconstructed values of the pixels in the block result in the correct CRC sequence. If the length of the CRC sequence is chosen properly, the probability that the correct parity bits are obtained for a wrong reconstruction can be made arbitrarily small, hence ensuring the lossless reconstruction of \(X \).

5.1 Estimation of \(k \)

A major problem at the encoder side is that of defining the number \(k \) of LSBs to be transmitted at the decoder. To describe the strategy we developed, let us start by observing that, since two adjacent bands of a hyperspectral image generally exhibit a strong correlation, the correlation coefficient \(\rho_{XY} \) between a block of the band \(X \) and the corresponding block in the previous band \(Y \) is very close to 1. As a consequence, there exists an approximately linear dependency between the two blocks and a linear prediction model based on the side information \(Y \) is likely to be a good predictor for the current block to be coded. To be specific let us focus on a single block in \(X \). Let \(\mu_x \) be the average value of the block. The encoder considers a set of linear predictors leading to a pool of predicted values \(\{ \hat{x}^{(l)}(i, j) \} \)

\[
\hat{x}^{(l)}(i, j) = \mu_x + \alpha^{(l)}[y(i, j) - \mu_y],
\]

where \(\mu_y \) is the average value of the corresponding block in \(Y \) and \(\alpha^{(l)} \) is a varying parameter. In particular \(\alpha^{(l)} \) is determined by inserting within equation (4) the true values of a pair of corresponding pixels in \(X \) and \(Y \). So, given two pixels \(x(i_l, j_l) \) and \(y(i_l, j_l) \), the parameter \(\alpha^{(l)} \) is determined as

\[
\alpha^{(l)} = \frac{x(i_l, j_l) - \mu_x}{y(i_l, j_l) - \mu_y}
\]

In our implementation the pixels \(x(i, j) \) and \(y(i, j) \) are all the pixels on the left and upper borders of the to-be-coded block, that is all the pixels belonging either to the first row or to the first column of the block (only one pixel out of four is considered so to reduce as much as possible the computational complexity of the encoder). Eventually, by indicating with \(x \) the vector with all the values of the pixels in the block, the quantity

\[
n_{\text{min}} = \min_i \|x - \hat{x}^{(l)}\|_{\infty}
\]

is taken as a rough estimate of the correlation noise existing between the current block \(x \) and the corresponding block in \(Y \). This quantity is used to set the number of least significant bits to be retained as:

\[
k = \lceil \log_2 n_{\text{min}} \rceil + 1
\]

i.e. the minimum number of least significant bits to be transmitted for each pixel that ensures a lossless recovery at the decoder.

5.2 Decoding

In order to exploit the side information to recover the most significant bits of \(X \), the decoder would need to know a model to predict the values of the pixels in \(X \) from those in \(Y \). This model does not need to be the same used by the encoder, it is only required that the prediction error experienced by the decoder does not exceed the maximum prediction error estimated by the encoder. For sake of simplicity we decided to use a predictor having the same form of the one used by the encoder. However, the decoder does not know the average value \(\mu_x \) of the current block, nor the value of the pixels in the first row and in the first column. Then it has to estimate these parameter, by resorting to the pixels of spatially contiguous blocks already decoded and to those belonging to the side information \(Y \).
Let us call \(\mu_{xu} \) and \(\mu_{ dx } \) the average values of the blocks above and on the left of the current block, and \(\mu_{y} \) and \(\mu_{ yl } \) the corresponding values in the previous band. By assuming that the spatial correlation in \(Y \) is retained in \(X \), we use the following estimate for the mean value \(\mu_{x} \):

\[
\hat{\mu}_{x} = \frac{1}{2} \left[\mu_{xu} \left(1 + \frac{\mu_{y} - \mu_{y}}{\mu_{y}} \right) + \mu_{dx} \left(1 + \frac{\mu_{y} - \mu_{yl}}{\mu_{yl}} \right) \right]
\]

which is more and more accurate as \(\rho_{XY} \) gets closer to 1. A similar expression is used to estimate the values of all the pixels of the first row and the first column of the block to be decoded.

The estimates of the pixels in the border of the block to be decoded undergo a further refinement obtained by replacing their least significant bits with those received from the encoder. The estimate of \(\mu_{x} \) and those of the border pixels are used to define a set of predictors \(\mathcal{P} \). Indeed, a larger number of predictors is built by perturbing the estimated values of \(\mu_{x} \) and those of the border pixels by adding a number of multiples of a given quantization step. Of course the lower the quantization step the more precise, and the more complex, the decoder.

All the candidate predicted values obtained by applying \(\mathcal{P} \) to \(Y \) are combined with the received least significant bits resulting in a right reconstruction of the current block if the condition

\[
| \hat{\mu}_{x}(i, j) - x(i, j) | < 2^{k-1}
\]

is verified for all the pixels in the block. In fact, a coset index of length \(k \) specifies a coset of values at a distance of \(2^{k} \) from each other and in order to select the correct value \(x(i, j) \) the predicted value \(\hat{\mu}_{x}(i, j) \) must be at a distance lower than \(2^{k-1} \).

5.3 Vector extension

5.3.1 Vector encoder

We also implemented a vector extension of the above scheme. In fact, using a vector encoder permits to increase the minimum distance between two elements of the coset, thus providing a higher immunity against spectral correlation noise than in the scalar case. More in detail, the coset index is formed by two parts, the former obtained scalarly by retaining the \(k - 1 \) least significant bit planes of the block, as in the scalar coder, the latter, let us indicate it by \(s_{k} \), computed by applying channel coding to the \(k \)-th bit plane (see figure 3). In order to determine the number of bit planes to be transmitted the encoder makes an estimate of the correlation noise existing between the current block and the corresponding block in the previous band, by using the same approach adopted for the scalar encoder. Note that the length of \(s_{k} \) is at the most equal to the length of the bit-plane itself. Since the dimension of a block is fixed to \(2^{q} - 1 \) pixels (for some \(q > 0 \)), the bi-plane has \(2^{q} - 1 \) bits thus allowing to employ a \((2^{q} - 1, 2^{q-1} - 1 - l_{s}) \) BCH channel code [37] to transmit a syndrome of length \(l_{s} \):

\[
s_{k} = p_{k} H_{s},
\]

where \(p_{k} \) is the \(k^{th} \) bit-plane and \(H_{s} \) is the \(l_{s} \times (2^{q} - 1) \) parity check matrix of the BCH code. The length \(l_{s} \) of the syndrome \(s_{k} \) is preliminarily estimated in order to select the BCH code with an error correction capability matched to the correlation noise and to ensure a lossless reconstruction at the decoder. In summary, the bit-stream relative to a compressed block includes

1. \((k - 1) \times r \times c \) bits for the \((k - 1) \) least significant bit planes (\(r \) and \(c \) are the dimensions of the block);
2. \(\lceil \log_{2}(h - 1) \rceil \) bits to code the scalar syndrome length (having indicated with \(h \) the number of bits each pixel value consists of);
3. \(l_{s} \) bits of the vectorial syndrome \(s_{k} \) relative to the \(k^{th} \) least significant bit-plane of the block
4. \((q - 2) \) bits to code the vectorial syndrome length, as the maximum error correction capability of a BCH code of length \((2^{q} - 1) \) is typically [37] \((2^{q-2} - 1) \)
The k-th bit plane is BCH-coded, whereas the $k-1$ least significant bit planes are transmitted uncoded.

5. p parity check bits relative to the CRC computed on the block

The choice of using a channel code to compress X is consistent with DSC theory which sees the side information Y (or, as in our case, the prediction of X obtained by relying on Y) as the output of a virtual channel with X as input. To correct the errors induced by this correlation noise, the decoder needs some redundant information which is nothing but the X-syndrome delivered by the BCH coder.

5.3.2 Vector decoder

The decoder resorts to a suitable linear prediction estimate obtained by means of the side information and the already decoded bits as done for the scalar case. For each candidate predictor, the decoder selects among the elements of the coreset specified by the syndrome s_k the bit-plane which is at minimum Hamming distance from the k^{th} bit-plane of the predictor currently tested. A successful decoding is obtained if the number of errors induced by a candidate predictor is lower than the error correction capability of the BCH code. Regardless of the result of the decoding of the k^{th} bit-plane, the $k-1$ least significant bit-planes are added to form 2^k-1 scalar syndromes of length k. Then the decoder needs to determine the most significant bits of each pixel. As in the scalar case, this is done by minimizing the distance to the predicted pixel value. The reconstruction of the current block is considered to be successful if the CRC sequence computed on the reconstructed pixels matches the received CRC, otherwise another candidate predictor is tested.

6 Experimental results - Part 2

To check the effectiveness of the adaptive schemes both from the point of view of computational complexity and coding efficiency, the scalar and the vector DSC adaptive coders have been applied to the same hyperspectral images used in Sect. 4.2, and the results we obtained have been compared to those of existing popular lossless compression algorithms, namely 2D-CALIC, JPEG-LS, and 3D-CALIC. As in the previous case, all data are assumed to be available in BSQ format.

Table 2: Coding efficiency of the adaptive DSC coders compared to that of conventional 2D and 3D schemes.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>Capriole</th>
<th>Lunar</th>
<th>Jasper</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG-LS</td>
<td>6.78</td>
<td>6.98</td>
<td>7.58</td>
<td>7.11</td>
</tr>
<tr>
<td>2D-CALIC</td>
<td>6.61</td>
<td>6.84</td>
<td>7.43</td>
<td>6.96</td>
</tr>
<tr>
<td>3D-CALIC</td>
<td>5.11</td>
<td>5.25</td>
<td>5.13</td>
<td>5.16</td>
</tr>
<tr>
<td>s-DSC</td>
<td>6.08</td>
<td>6.23</td>
<td>6.24</td>
<td>6.18</td>
</tr>
<tr>
<td>v-DSC</td>
<td>5.94</td>
<td>6.09</td>
<td>6.10</td>
<td>6.04</td>
</tr>
</tbody>
</table>

With regard to the scalar codec, we chose a block size of 16\times16, since it provides a good balance between adaptivity and length of the channel code. Note also that the use of a small block
Figure 4: Computational complexities of DSC and conventional codecs. Both the per-band complexity of the encoder and the decoder are reported.

size increases the relative weight of headers and trailers carrying the information about syndrome length and checksum. As to the vector codec, a 15 × 17 block is employed allowing to use a (255, 255 − l_s) BCH code (q = 8), while a CRC code with the same parity check length (p = 32) is adopted for both the DSC codecs, thus providing a decoding error probability of \(2^{-32}\).

All the algorithms have been run on a workstation with a Pentium III 850MHz processor and Linux 2.6.5 operating system: table 2 reports the bit-rates achieved by each compression algorithm for Cuprite, Lunar, and Jasper images as well as the average value relating to the three scenes, while figure 4 depicts the computing times per band, averaged over the three images for both encoder and decoder. As expected, both DSC schemes show a remarkable asymmetry in the computational complexity between encoder and decoder, the former resulting much faster than the latter. By comparing the new schemes, there is a little gain in the compression ratio (nearly 0.1 b/p) achieved by the vector scheme with respect to the scalar one though it causes a considerable increase of the computational cost both in coding and decoding operation. A comparison with the other methods reveals that the DSC codecs perform about 1 b/p below the bit-rates achieved by JPEG-LS and 2D-CALIC but about 1 b/p above the bit-rates of 3D-CALIC. On the other side, the scalar DSC encoder, which is the fastest between the two DSC schemes, is about 10 times faster than 3D-CALIC and about 5 times faster than 2D-CALIC, though it is about 2 times slower than JPEG-LS.

Comparing the results in Tab. 2 with those of DSC-CALIC in Tab. 1, it can be seen that the average compression performance of DSC-CALIC is similar to that of s-DSC. The vector extension has improved performance, but also improved complexity. Therefore, it turns out that, for the application considered in this paper, a scalar multilevel code achieves the same performance as a powerful binary code, with evident advantages in terms of encoder computational complexity.

6.1 Further insights on the encoder complexity

In order to better understand where the residual complexity of the encoder derives from, we measured the impact that the various steps performed by the encoder have on the encoding time. The results we obtained are shown in figure 5.

Interestingly, the calculation of the CRC is the most computationally intensive operation. At the same time the choice of the predictor, thanks to the particular procedure we adopted that estimates it by considering only a small subset of the pixels in the block, accounts only of one third of the computing time. The above observation suggests some possible directions to further speed up the encoder. First of all, we can observe that the error correction code we used (a 255 long BCH code) offers good geometric properties but is characterized by a rather complicated encoding process. Faster computation of CRC bits could be achieved by adopting a simpler code, possibly at the expense of worse error detection properties. A second way of improving the system consists in...
Figure 5: Computational complexity of the scalar and vector encoders split among tasks.

in deciding to transmit the parameters of the predictor used by the encoder. In this way we could avoid to transmit the CRC bits hence significantly speeding up the encoder. This improvement would be paid by a slight increase of the bit rate, since storing the predictor parameters requires a few more bits than the CRC length. It is also worth noting that, at least in the scalar case, this latter approach would constitute a significant deviation from the DSC paradigm, since the new scheme would closely resemble a classical inter-band prediction-based encoder.

7 Discussion and conclusions

The objective of this paper was to evaluate the potential of DSC as applied to real-world data in a realistic scenario. Among the possible benefits brought by the DSC approach we focused on reducing the computational burden of the encoder. Specifically, our target application was on-board lossless compression of hyperspectral data with reduced encoder complexity. The possibility of exploiting the opportunities offered by DSC theory to improve other aspects of hyperspectral codes, e.g., to reduce the communication bandwidth between the two sources of information here represented by two consecutive image bands, is left for future research.

To achieve the above objective, we have designed two DSC coders that borrow from existing coders as for the pure S-W coding, but exhibit distinctive features in their application to real-world data. The rationale behind designing two coders is to evaluate two different approaches to DSC, i.e., capacity achieving channel codes, and simple multilevel codes. The performance of these techniques has been compared with that of state-of-the-art 2D and 3D lossless compression algorithms. The following remarks can be made on the basis of the experimental results on AVIRIS data.

- Practical binary S-W coding based on LDPC codes has very high performance, since it is as close as 0.05 b/p to the theoretical bound.
- However, the encoder complexity of capacity-achieving binary codes is not negligible, and may outweigh the benefits of DSC if the encoder is not implemented carefully.
- Binary S-W coding turns out to be significantly suboptimal with respect to multilevel S-W coding. This can be seen by comparing binary and multilevel conditional entropies, which differ by about 1 b/p.
- This implies that a simple multilevel coset code can obtain performance as good as a powerful binary code, with much lower complexity. This result is achieved by the proposed scalar scheme. In fact, the performance of the scalar scheme is equivalent to that of DSC-CALIC, but with much lower complexity.
- This also implies that there is still a lot of performance gain to be achieved, in order for DSC-based schemes to get as close as possible to the performance of a multilevel joint encoder such
as 3D-CALIC. This can be done by employing capacity-achieving multilevel channel codes. However, in [38] it is shown that the most significant correlation is between the current and the previous bit-plane; this suggests that careful optimization of a binary coder, employing a probability model that takes into account also the probability of the symbols in the previous bit-plane, might lead to improved performance. Whether this also holds for 16-bit data is still to be investigated.

We would like to conclude our discussion by explicitly observing that the schemes we developed, though offering promising results, are not efficient enough to compete with classical state-of-the-art techniques. Indeed, similar or better performance, both in terms of coding efficiency and simplicity, can be achieved by applying a very simple inter-band prediction scheme followed by intra-band coding of the prediction error (e.g. by means of a standard JPEG-LS encoder). This is not surprising; it took several years before conventional lossless inter-band prediction-based codecs reached the maturity level they offer today. Similarly, it is easy to imagine that significant amount of research is still needed before encoders designed according to the DSC paradigm can compete with their predecessors. Nevertheless, we deem that our investigation is an interesting one, because it clearly highlights the difficulties encountered when trying to apply DSC techniques to remote sensing image compression and, most of all, it introduces a bunch of new ideas that permit to reduce the gap between theoretically predicted performance and practical schemes.

References

