DE	
	Router/switch architectures
	Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it hitp://www.telematica.polito.it

\qquad
\qquad
\qquad
\qquad
\qquad
firstname.lastname@polito.it
\qquad

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 1 \qquad

The Internet is a mesh of routers

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Internet is a mesh of routers

\qquad

- Access router:
- high number of ports at low speed (kbps/Mbps) \qquad
- several access protocols (modem, ADSL, cable)
- mostly sw based and general purpose CPU
- Enterprise router:
- medium number of ports at high speed (Mbps)
- several services (IP classification, filtering)
- Core router:
- moderate number of ports at very high speed (Gbps)
- very high throughput
- mostly ASIC and special purpose CPU

Router/switch architectures

Router/switch architectures

Hardware architecture: main elements

- Line cards
- support input/output processing and rx/tx
\qquad
- store packets in queues
- adapt packets to the internal format of the switching fabric \qquad
- support data link protocols
- classify packets \qquad
- schedule packets
- support security \qquad
- Switching fabric
- transfers packets from input ports to output ports

Hardware architecture: main elements

- Control processor/network processor \qquad
- runs routing protocols
- computes routing tables
- manages the overall system
- Forwarding engines
- compute the packet destination (lookup) \qquad
- inspect packet headers
- rewrite packet headers \qquad

Andrea Bianco - TNG group - Politecnico di Torino

Router/switch architectures

Switching fabric

- Our assumptions:
- Bufferless
- to reduce internal hardware complexity
- Non-blocking
- it is always possible to transfer in parallel from input to output ports any non-conflicting set of cells
\qquad
\qquad
\qquad

Andrea Bianco - TNG group - Politecrico di Torino
Computer Networks Design and Management - 11

Switching fabric

- Examples:
- Buses
- Shared memory
- Crossbar
- Multi-stage
- rearrangeable Clos network
- Benes network
- Batcher-Banyan network (self-routing)

\qquad
\qquad
\qquad
- Buffered cross-bars (not considered) \qquad
\qquad

Router/switch architectures

Speedup

- The speedup (increase in speed with respect to line speed) determines switch performance:
$-S_{\text {in }}=$ reading speed from input queues
$-S_{\text {out }}=$ writing speed to output queues
- The speedup is also a technological constraint
- Maximum speedup factor: \qquad
$-\mathrm{S}=\max \left(\mathrm{S}_{\text {in }}, \mathrm{S}_{\text {out }}\right)$

Andrea Bianco - TNG group - Politecrico di Torino
Computer Networks Design and Management - 14

Faster and faster

\qquad

- Need for high performance routers \qquad
- to accommodate the bandwidth demands for new users and new services
- to support QoS
\qquad
- to reduce costs
- Moore's law (electronic packet processing power) is too slow with respect to the increase in link speed
- The bottleneck is memory speed
\qquad
\qquad
\qquad

Single packet processing

- The time to process one packet is becoming shorter and shorter
- Worst case: 40-Byte packets (ACKs)
- $3.2 \mu \mathrm{~s}$ at 100 Mbps
- 320 ns at 1 Gps
- 32 ns at 10 Gps
- 3.2 ns at 100 Gbps
- 320 ps at 1 Tbps
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Switches with queues at outputs

- OQ (Output Queued)
- The switching fabric is able to transfer to any output all cells received in one time slot
- 100% throughput
- Optimal average delay
- Speedup \mathbf{N} with respect to line speed is required in switching fabric speed and in output port memory access

\qquad
\qquad
\qquad
\qquad
\qquad

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 17

Switches with queues at inputs

- IQ (Input Queued)
- Switching constraints
- at most one cell for each input and for each output can be transferred
- Advantages:
- Switching fabrics and
memories less costly
- No speedup required in the switching fabric
- Memory access speed equal to line speed

- Speedup=1
- Only viable solution for very high speed devices
Andrea Bianco - TNG group - Politecnico di Torino

Router/switch architectures

Q switches

- Two problems:
- Define scheduling algorithms to avoid output contention
- Select in each time slot data to be transmitted from inputs to outputs
- Constraint: in each time slo

At most 1 data from each input (no speeedup in reading)
At most 1 data to each output (no speedup in writing because no memory
is available)
 is available)

- Two problems:
- Memory architecture:
- If using FIFO queues, HoL (Head of the Line) blocking
- If choosing cyan packet from queue N , the red packet in queue 1 is blocked by the cyan packet which is at the head of queue 1 even if red output port N is free
- For uniform unicast traffic
throughput limited to 58.6%

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 20

Memory architecture in IQ

- To avoid HoL blocking phenomenum, a more complex memory architecture is needed
- Two possible solutions:
- p-window queueing
- VOQ (Virtual Output Queueing)

Memory architecture

- p-window queueing:
$-p$ is the window size
- The first p cells of each queue are considered for scheduling
- Higher complexity
- Scheduler deals with pN cells
- Non FIFO queues
- HoL blocking reduced, completely eliminated only for $\mathrm{P} \rightarrow \infty$

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 22

Memory architecture

- VOQ (virtual output queueing)
- At each input data are stored in separate queues according to data destination (N queues for each input)
- N^{2} queues in total
- Eliminates HoL blocking and it permits to achieve 100\% throughput with a proper scheduling algorithm
Andrea Bianco - TNG group - Politecnico di Torino

Scheduling problem modelling

- Problem to be solved by the scheduling can be represented using a bipartite graph
- An edge $i \rightarrow j$ exist if there is at least a data at input i willing to reach output j
- Edges may be weighted
- Weight
- Binary
- Queue length
- HoL cell age or waiting
time
- Other metrics

Router/switch architectures

Scheduling problem modeling

- The scheduling algorithm tries to determine, in each time slot, a matching over the bipartite graphs. \qquad
- Select at most N edges with constraints
- At most one edge for each input
- At most one edge for each output

Graph G
Andrea Bianco - TNG group - Politecnico di Torino

Matching M
Computer Networks Design and Management - 25

Scheduling problem modeling

- Another possible representation is based on a (Request Matrix RM), which stores the information related to data transfer request

- Matching \rightarrow it is a permutation matrix i.e., a matrix such that the row and column sum is at most equal to 1
Andrea Bianco - TNG group - Politecnico di Torino Computer Networks Design and Management - 26

Scheduling in IQ switches

- Request Matrix
- Permutation matrix

$$
\left[\begin{array}{llll}
3 & 5 & 0 & 0 \\
2 & 0 & 0 & 4 \\
4 & 5 & 0 & 0 \\
0 & 0 & 8 & 2
\end{array}\right] \quad \longrightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Traffic description

- $A_{i j}(n)=1$ if a packet arrives at time n at input i, with destination reachable through output j
- $\lambda_{\mathrm{ij}}=\mathrm{E}\left[\mathrm{A}_{\mathrm{i}}(\mathrm{n})\right]$
- An arrival process is admissible if:
$-\sum_{i} \lambda_{i j}<1$
$-\sum_{j} \lambda_{i j}<1$
- no input and no output are overloaded on average
- OQ switches exhibit finite delays (for admissible traffic)
- Traffic matrix: $\Lambda=\left[\lambda_{\mathrm{ij}}\right]$

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 28

Scheduling policies: objective

- Let us consider a NxN IQ
- Denote by i the input port index and by j the output port index
- Goal: assuming infinite buffer size, transfer any admissible traffic pattern with no losses
- Solutions are known
- If traffic pattern is known in advance
- TDM of Birkhoff von Neumann algorithm
- For admissible unknown traffic patter
- Maximum Weight Matching
- Maximum Size Matching
- Several heuristics are proposed for unknown traffic pattern
- iSLIP, iLQF, IOCF, 2DRR (WFA), MUCS, RPA, and many others

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 29

Scheduling uniform known traffic

- A number of algorithms give 100% throughput when admissible traffic is uniform
- For example:
- TDM and a few variants
- iSLIP (see later)

Example of a TDM schedule for a 4×4 switch \qquad
$\vec{\longrightarrow} \rightarrow>\rightarrow \cdots \rightarrow$
Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 30
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Router/switch architectures

Birkhoff - von Neumann theorem

- Any doubly stochastic matrix Λ can be expressed as convex combination of
\qquad permutation matrices π_{n} :

$$
\Lambda=\sum_{n} a_{n} \pi_{n}
$$

- with \qquad
$-a_{n} \geq 0$
$-\sum_{n} a_{n}=1$

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 31

Scheduling non-uniform known traffic

- Thanks to the Birkhoff - von Neumann theorem
- If the traffic is known and admissible, 100\% throughput can be achieved by a TDM scheme using:
- for a fraction of time a_{1} matching $M_{1}\left(\pi_{1}\right)$
- for a fraction of time a_{2} matching $\mathrm{M}_{2}\left(\pi_{2}\right)$
- for a fraction of time a_{k} matching $M_{k} \quad\left(\pi_{k}\right)$

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 32

MSM: Maximum Size Matching

- MSM maximizes the number of data transferred in a single time slot, i.e. select the maximum number of edges
- Instantaneous throughput maximization.
- Asymptotic computational complexity is $O\left(\mathrm{~N}^{2.5}\right)$
\qquad
- Non optimal algorithm
- Some admissible traffic pattern cannot be scheduled, i.e. it does not always achieve 100\% throughput. \qquad

Andrea Bianco - TNG group - Politecnico di Torino

Three MSM are possible in overload, i.e. when all queues are full

When the first matching is chosen, the maximum throughput cannot be achieved
Andrea Bianco - TNG group - Politeccico di Torino Computer Networks Design and Management - 34

MWM: Maximum Weight Matching

- A weight is associated with each edge
- The MWM, among all possible N! matchings, selects the one with the highest weight (sum of edge metrics)

MWM: Maximum Weight Matching

- MWM does not maximize instantaneous throughput (worse than MSM)
- It was demonstrated that a MWM algorithm
- in IQ switches with VOQ architecture
- under admissible traffic
- with infinite queue size
- when using as weight either the queue length or the age of the HoL data
achieves 100% throughput
- Asymptotic computational complexity $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- With finite queue size, it behaves similarly to MSM
- Problems with delays and possible starvation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
adrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 36
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pag. 12

Practical solutions

- Need to define heuristics
- with reasonable complexity
- that can be implemented in hardware
- Any scheduling algorithm defines three aspects:
- A method to compute the weights to be associated with each edge (metric) \qquad
- Approximate MSM
- Binary (queue occupancy)
- Approximate MWM
\qquad
Queue length (it is an indication of the fact that the queue, which
is associated with an input/output pair, is suffering)
Age of Hol data
- Interface load
- Ad hoc metrics to select critical edges/ nodes

Andrea Bianco-TNG group- Politecnico di Torino

Practical solutions

- A heuristic algorithm to determine a matching
- A contention resolution algorithm among edges with the same metric:
- round-robin (initial choice state dependent)
- sequential search (initial choice non state dependent)
- random \qquad
\qquad

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 38

i-SLIP

- Iterative algorithm
- It defines a heuristic algorithm which determines, with a proper number of iterations, a maximal size matching (i.e., a matching that
\qquad cannot be further extended with other edges selection)
- Metric is the queue occupancy \qquad
- To solve contentions, it exploits an arbiter for each input and for each output \qquad

i-SLIP

- In each iteration, three phases can be identified:
- Request: each unmatched input sends a request to every output for which it has a cell
- Grant: each unmatched output that has received requests, sends a grant to one of the requesting inputs.
- Contentions solved by a round robin mechanism.
- Accept: if an unmatched input receives grants, it selects an output and becomes matched to it
- Contentions solved by a round robin mechanism

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 40

i-SLIP: counters

- Each input (output) has a pointer associated with to solve contentions
- The output pointer is incremented, modulo N, by one unit beyond the index of the input to which the grant was issued
- The input pointer is incremented, modulo N, by one unit beyond the index of the output from which an accept was received
\qquad
\qquad

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 41

i-SLIP: properties

- For uniform overload \rightarrow the bipartite graph is a full mesh \rightarrow the higher the number of \qquad alternatives, the easier is to determine a good matching. iSLIP degenerates to a TDM scheme ES:
(1,2,3,4

i-SLIP: properties

\qquad

- At the end:

IT N

- A maximum (implies maximal) matching is obtained after N iterations

i-SLIP: properties

In the following steps, pointers are staggered \Rightarrow one iteration is enough to obtain a maximum matching

Pag. 15

i-SLIP: properties

- Each iteration has a computational complexity of $O\left(\mathrm{~N}^{2}\right)$, but it can be easily made parallel
- Worst case in one iteration: 1 edge is selected
- When executing N iterations, the matching is maximal (depends on the choice made but cannot be extended) \rightarrow however, the computational complexity is $O\left(N^{3}\right)$
- Experimental results show that $\log _{2} N$ iterations are in general enough to obtain good performance
- Performance drops if pointers are badly synchronized
- iSLIP was implemented on a single chip in the Cisco 12000 router

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 46

iSLIP: extensions

- Use the same heuristic algorithm (3-phase) but with different metrics
- Queue length
LQF
- HoL cell age
iOCF
- Input send requests containing the weight
- Contentions are solved using the weight first, only for equal weights the choice is random
- Does not exploit pointer synchronization to obtain good performance, rather the edge weight
- OCF has better delay properties (never starves data), but the increase in complexity is significant and makes the algorithm practically unfeasible

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 47

2DRR: Two Dimensional

Round Robin

- Operates on the request matrix
- Extension of the WFA (Wave Front Arbiter), very easily implementable in hardware
- Definitions
- Generalized diagonal is a set of N elements of a matrix
$N x N$ such that two elements do not belong to the same row or column
- A set of N diagonal is said to be covering if each element of the matrix belongs to one and only one diagonal
- In each time slot, the algorithm goes through N iterations
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2DRR: Two Dimensional

Round Robin

- At the beginning, all links (input-output connections) are enabled
- At each iteration, a given generalized diagonal is chosen
- Only enabled links may be selected if the are covered by the elements belonging to the chosen diagonal
- If a link from input i to output j is selected, all requests issued by i or sent to j are disabled for the current time slot (cannot be chosen in the matching)
- In N iterations, all N generalized diagonal are considered and the request matrix is fully covered
\qquad
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2DRR: Two Dimensional

Round Robin

- At each time slot, a different covering set of generalized diagonal is chosen, to improve fairness
\qquad
- Indeed, edges covered to the first diagonal chosen are more likely selected
- Round robin over different sets of covering diagonal and round robin on each element in the set
- Emulates a MSM
- Not easy to extend to other metrics
- Asymptotic computational complexity $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Router/switch architectures

Traffic scenarios

- Uniform traffic
- Bernoulli i.i.d. arrivals
- usual testbed in the literature
- "easy to schedule"
- Diagonal traffic
- Bernoulli i.i.d arrivals
- critical to schedule, since only two matchings are good

$$
\Lambda=\frac{\rho}{N}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

\qquad
\qquad
\qquad
$\Lambda=\frac{\rho}{3}\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 2\end{array}\right]$
Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 52

Uniform traffic

- Comparison between MWM, iSLIP, iLQF, RPA \qquad

Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 53

Diagonal traffic

- RPA achieves 98% throughput, iLQF 87\%, iSLIP 83\% \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pag. 18

Issues in IQ switches

- Signalling:
- Signalling bandwidth required to transfer weights from inputs to the controller may be significant with respect to the available bandwidth in the switching fabric
- The more complex the adopted metric, the larger the signalling bandwidth required
- Differential signalling may be adopted \qquad
- Multiple classes:
- Given K classes, first the VOQ architecture must be extended, by using KN queues at each input
- Scheduling algorithms must be extended to support priorities
Andrea Bianco - TNG group - Politecnico di Torino

Issues in IQ switches

- QoS (fair queueing)
- Scheduling for QoS (need to serve the most urgent packet) has a difficult interaction with the scheduling to transfer data from inputs to outputs
- Need to balance performance and fairness
- No ideal optimal solution known
- Frame scheduling
- Operate on a frame of length F slot, and compute a schedule on the frame and not on a slot by slot basis
- Scheduling algorithm executes only at frame boundaries
- Relatively easy to provide QoS guarantees for each input-output pair
- Delay increases at low loads

Andrea Bianco - TNG group - Politecrico di Torino

Issues in IQ switches

- Variable packet length support
- May introduce packet scheduling instead of cell scheduling
- Packets transferred as trains of cells
- An edge is selected when the first cell of a packet arrives and is kept in all the following matchings until the last cell of the packet is transferred
- It avoids reassembly machines at outputs
- Same throughput guarantees
- Packet delay may be larger or shorter
- Depends on packet length distribution

Issues in IQ switches

- Multicast:
-2^{N} possible different multicast flows
- May be treated as unicast through input port replication (often named multicopy)
- At each input a number of copies equal to the packet fanout are
created, for the proper outputs, and inserted in the proper VOQ - Speedup required
- Increases the instantaneous input load
- May lead to low throuhgput (unable to sustain a single broadcast
- Scheduling for multicast must be defined to exploit
switching fabric multicast capabilities
- Balance fanout splitting and no-fanout splitting
- Often a single FIFO for multicast is proposed (HoL blocking, less critical with respect to unicast)
- Critical traffic patterns when few inputs are active

Example of a critical traffic pattern \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Issues in IQ switches

- MC-VOQ architecture
- 2^{N} separate queues at each input
- Best possible solution (no HoL blocking)
- An optimal scheduling was defined (only theoretically)
- Implies re-enqueueing and out-of-sequence
- However, admissible traffic pattern exist that cannot be
scheduled in an IQ switch regardless of the queue architecture
and of the scheduling algorithm
- Scalability problem
- Number of queues
- Scheduling algorithm
- Manage a finite number of queues
- CIOQ switches (a moderate speedup helps a lot)

Router/switch architectures

References

- Karo. M. M. Huchy M. M., Morgan S., "Input versus output queueeing on a space division switch", IEEE Transactions on Communications, vol. $35, \mathrm{n}$, 12 , - Mckeown N. Anantharam V., Walrand J.."Achieving 100\% throughput in an input-queued switch",IEEE INFOCOM96, vol.1, San Francisco, CA

 K.im C.K.L.Lee T.T.," "Call scheduling algorithm in multicast switching systemss", IEEE Transactions on Communications, vol.40, n.3, Mar. 1992 , pp. 625 .
635

Chang C.S., Lee D.S., Jou Y.S., "Load balanced Bikhhoft-von Neumann switches", 2001 IEEE HPSR, 2001, pp.276-280.
Andrea Bianco - TNG group - Politecnico di Torino
Computer Networks Design and Management - 61

