

QoS in B-ISDN Networks

Cell level

- · Traffic characterization:
 - Inter-arrival time distribution
 - Distribution of the number of cells generated in a measurement period T
 - Often less information is accepted (also for complexity reasons) · Inter-arrival expected value and variance
 - · From the average inter-arrival time the average bit-rate can be computed Quality of service:
 - reliability
 - Cell loss probability
 - Cell error probability
 - Cell mis-insertion probability (cells belonging to other VC erroneously inserted in the current VC)

Computer Networks Design and Manage

- Expected value, variance and maximum cell delay

a Bianco – TNG group - Politecnico di Torino

Standard

· A traffic contract was defined

- Traffic characterization
 - Accurate
 - · Uniquely verifiable
 - · Simple, to be useful for the computation of network resources that should be allocated to the connection
- QoS guarantee
 - · Parameters defined in the ITU-T I.356 reccomendation

co – TNG group - Poli

Computer Networks Design and Manag

Standard: traffic characterization

- · Identification of cell flows within a connection
- · Definition of traffic intrinsic parameters
 - Traffic nominal characteristics in absence of interfering traffic
- · Tolerance: accepted variations with respect to nominal characteristics
 - CDVT: Cell Delay Variation Tolerance
- Conformance definition

a Bianco – TNG group - Politecnico di Torino

- GCRA algorithm (Generic Cell Rate Algorithm)

Computer Networks Design and Manage

Standard: traffic characterization Cell flows generated by the user, excluding OAM e RM cells generated by switches (it is the set of cells whose conformance to the nominal parameter will be verified) - Aggregated flow - Data cell flow (no RM and OAM) - High priority data cell flow (CLP=0) - OAM cell flow - RM cell flow

- Data + OAM cell flow
- High priority data cell (CLP=0) + OAM flow

a Bianco – TNG group - Politecnico di Tor

Standard: traffic characterization · Definition of traffic intrinsic parameters PCR (Peak Cell Rate) Inverse of the minimum cell inter-arrival among two adjacent cells - SCR (Sustainable Cell Rate) · Inverse of the average inter-arrival time among two adjacent cells - IBT (Intrinsic Burst Tolerance) Maximum ahead time for which a cell can be transmitted with respect to the nominal arrival time determined by the SCR value - MBS (Maximum Burst Size)

- Maximum size of a cell burst, a group of cells that can be transmitted at PCR
- MBS = 1 + IBT/(1/SCR-1/PCR) IBT= (MBS-1)(1/SCR-1/PCR)

- TNG are

Quality of service: standard ITU-T I.356

- CTD (Cell Transfer Delay)

 Average time between the transmission of the first bit and the reception of the last bit
- 2-pt CDV (Two point Cell Delay Variation)
- Variation of cell delivery time
- Difference between the 10⁻⁸ inferior and superior quantile
- of CTD
- CLR (Cell Loss Ratio)
 - Cell loss probability
 - Ratio between lost cells and transmitted cells
 - CLR₀ e CLR₀₊₁

Andrea Bianco - TNG group - Politecnico di Torino

er Networks Design and Management 17

- CMR (Cell Misinsertion Rate)
 - Ratio between erroneously received cells (cells belonging to other VCs) and the total number of received cells

rks Design and Mana

SECBR (Severely Errored Cell Block Ratio)

- TNG

Quality of service classes

- Defined through some parameters:
 - CLR
 - CDV
- · 4 QOS service classes standardized by ITU-
 - T to satisfy 4 main types of user services:
 - Class 1: STRICT (CDV, CLR₀₊₁)
 - Class 2: TOLERANT (CLR₀₊₁)
 - Class 3: LIMITED (CLR₀)
 - Class U: BEST EFFORT (does not admit negotiation of any parameter)

co - TNG group - Politecnico di Torino Computer Networks Design and Manag

Transfer modes

- ITU-T: internationally recognized standardization body
- · ATM forum: de-facto standardization body
- Transfer modes defined
 - By ITU-T as ATC (ATM Transfer Capability)
- By ATM Forum as Service Class
- · Transfer mode distinguished through definition of:

Computer Networks Design and Manage

Computer Networks Design and Manag

- Cell flows to which guarantees are provided
- Parameters to characterize flows
- Conformance verification applied to flows
- Adopted control functions Bianco - TNG group - Politecnico di Torino

Transfer modes

- Do not define QoS requirements

 Each transfer mode can be associated (almost) with any negotiable QoS
- Five main transfer modes:
 - CBR/DBR: Constant/Deterministic Bit Rate
 - VBR/SBR: Variable/Statistical Bit Rate
 - UBR: Unspecified Bit Rate
 - ABR: Available Bit Rate
 - ABT: ATM Block Transfer
- ABT ed ABR use RM cells to control flow cell emission rate

frea Bianco – TNG group - Politecnico di Torino

Transfer modes

- Define ATM layer services and the associated QoS
- To each service, a set of admissible QoS parameters values is defined
- Network operators may add other QoS parameter values beyond the standardized ones

Transfer modes: DBR

- · Characterization:
 - PCR over aggregated flow (data+OAM+RM) or
 - PCR over data+OAM flow
 - Does not use the CLP bit
- Offers static bit rate equal to the negotiated PCR (possibly more than PCR)
- Use a single instance of GCRA
- Isochronous services or fixed bit rate services
- CAC over B_P (or B_{eq})
- Associated with service class 1

ndrea Bianco – TNG group - Politecnico di Torin

nputer Networks Design and Management

Computer Networks Design and Mana

Transfer modes : SBR

Characterization (3 flavor):

a Bianco – TNG group - Polit

- SBR1: PCR, SCR and MBS over aggregated flow
 SBR2: PCR over all data cells (0+1), SCR (0), MBS (0). Tagging over non conformant cells not admitted
- SBR3: like SBR2, but tagging of non conformant cells is admitted
 Offer a variable bit rate, normally ranging between PCR e
- SCR to satisfy source needs, not network needs
- Always two instances of GCRA are used
- Isochronous service or data services with variable bit rate
- CAC over B_P, B_M, B_{eq} or exploiting measurements – Allocated bandwidth must be guaranteed through a proper scheduling algorithm
- · Typically, loss rate and delays are negotiated

ndrea Bianco – TNG group - Politecnico di Tori

Computer Networks Design and Management 2

QoS in B-ISDN Networks

Transfer modes: UBR

- Standardized only by ATM Forum
- ITU-T: UBR can be obtained as DBR with U class of service
- Characterization:
- PCR over aggregated flow
- No conformance definition
- No bit rate allocation, no QoS guarantees on delays and loss probabilities

Computer Networks Design and Mana

- Switches exploit cell discarding techniques
- To reduce segmentation negative effects
 - More losses
 - "Useless" traffic transported
 - Loss priority in buffers

co - TNG group - Politecnico di Torino

UBR: cell discarding

- Selective Cell Discarding:
 - Drop cells belonging to a (higher layer) packet/message for which at least another cell was already dropped Packet identification is easy for AAL5
 - Some "useless" traffic due to head of packets (already transmitted cells)
- Early Packet Discarding:
 - Discard full messages (entire set of cells) when the buffer occupancy exceeds a given threshold
 - Higher layer packets segmented in cells are either entirely transferred or dropped,

 - When the buffer occupancy exceeds the threshold, cells belonging to packets already partially transmitted are stored and later transmitted, cells belonging to new packets are dropped
 - Need to set up threshold value properly depending on (average?) packet size and buffer size

Computer Networks Design and Man

Computer Networks Design and Manage

TNG group - Politecnico di Torino

Other cell discarding mechanisms

- · Use of the EFCI bit in the cell header PT field:
 - Used to indicate congestion to protocol layers higher than ATM
 - It is assumed that higher layer protocols react to congestion signals
- · Cell discarding based on priority:
 - If buffer size occupancy becomes critical (e.g.: full buffer or buffer occupancy over threshold) low priority cells (CLP=1) are discarded
 - Divided in two categories:
 - Non protective
 - . igh priority may suffer losses due to low priority packets previously stored
 - · Protective (full separation between high and low priority)
 - Need to control cell generation process Politecnico di Torino Comp - TNG

Transfer modes: ABR

- · ABR (Available Bit Rate) offers an allocated bit rate between PCR and MCR depending on network resources availability; goals
 - Full bit rate utilization

Bianco - TNG group - Politecnico di Torini

- Fair resource partitioning
- · The network explicitly signals to sources the transmission bit rate
- · It provide small CLR (ideally zero CLR) if source adapt their rate to network indication

Transfer modes: ABR

- · Characterization:
 - PCR over aggregate flow (data+OAM+RM)
 - MCR (Minimum Cell Rate) over aggregated flow (data+OAM+RM)
- Conformance definition based on GCRA with parameter T adapted to network signals
- Source behavior completely specified in standards
- Node algorithms, as usual, not standardized

- TNG group - Po

ABR: source behavior

- · An ABR source
 - Starts transmission at a negotiated rate (ICR)
 - Periodically inserts RM forward cells in cell flow
 - When it receives an RM backward cell it adapts the transmission rate to the minimum value contained in the cell
 - If no RM backward cells are received, the source slows down until it stops
 - If the source is silent more than a given period, it starts transmitting at the negotiated rate

Computer Networks Design and Managem

Bianco – TNG group - Politecnico di Torino

ABR: node behavior

- · Three possibility to control source emission rate:
 - EFCI (Explicit Forward Congestion Indication):
 - Equivalent to the congestion notification used in frame relay
 1 control bit to signal congestion
 - It is the simplest but less efficient mechanism
 - Destination translate EFCI bits into a CI bit in backward RM cells
 - RRM (Relative Rate Marking): nodes send on backward RM cell a ternary information through two bits (CI,NI) setting (increase rate, keep rate, decrease rate)
 - ER (Explicit Rate): nodes send on backward RM cells the rate at which a source can send cells
- Nodes overwrite info in RM cells only if constraining more source behavior Blano - TN8 grup - Palleonica Toma
 Computer Networks Design and Management 32

ABR: node behavior When adopting EFCI and RRM schemes, nodes normally control congestion by monitoring buffer occupancy Threshold mechanism: Single FIFO, occupancy based (positional) Hysteresis One FIFO per VC Derivative Integrative ER: nodes control congestion measuring traffic load (background, ABR) and the number of active ABR connections

ABR: RM cell main fields

- Protocol type (ABR, ABT)
- · Direction (Forward, Backward)
- NI (No-Increase), CI (Congestion Indication)
 bits

Computer Networks Design and Mana

- ECR: Explicit Cell Rate
- · CCR: Current Cell Rate
- MCR: Minimum Cell Rate
-

Bianco - TNG group - Politecnico di Torino

ABR: some parameters Parameters negotiated when opening the VC PCR: Peak Cell Rate MCR: Minimum Cell Rate MCR: Initial Cell Rate Source start sending at ICR. Ranges between PCR and MCR RIF: Rate Increase Factor Negative power of 2, referring to PCR RDF: Rate Decrease Factor Negative power of 2, referring to CCR TBE: Transient Buffer Exposure Amount of data that can be transmitted without receiving backward RM edls

ABR: example of an RRM algorithm			
 Not standa Measure Q Define two Positional Q,<l< li=""> L<q,<h< li=""> H<q,< li=""> </q,<></q,<h<></l<> Positional ∀Q, Q,<l< li=""> Q,<l< li=""> Q,<l< li=""> L<q,<h< li=""> H<q,< li=""> </q,<></q,<h<></l<></l<></l<> 	ardized Δ_{i_1} queue len thresholds: control NI=1 CI=1 - Derivative $D(Q_i) < \beta$ $\beta < D(Q_i)$ $-\beta < D(Q_i) < \beta$ $-\beta < D(Q_i) < \beta$	gth at i, and H, L, with L Cl=0 Cl=0 control NI=O Cl=0 NI=O Cl=0 NI=0 Cl=0 NI=0 Cl=0 Cl=1	d D(Q _i)= Q _i , Q _{i-1} . <h< td=""></h<>
Andrea Blanco – TNG group - Politecnico di Torino Com			Computer Networks Design and Management 37

ABT

- IT (Immediate Transmission):
 - Send a block of cells at a constant bit rate, equal to BCR · Each node either discards or accepts the full block
 - Rather inefficient when crossing several nodes
 - Exploits part of the available bandwidth for short periods · Acceptance can be done looking at bit rate only, at buffer

- DT (Delayed Transmission):

- · Can re-negotiate block transfer rate, but need to wait for a positive answer from the network
- Continuous negotiation, without exploiting signalling

Computer Networks Design and Mana

Exercise

- Discuss a possible architecture to support ATM transfer modes
 - Queuing structure
 - Schedulers
- Start by considering each transfer mode separately

ea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management 43