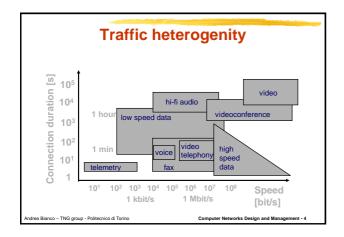
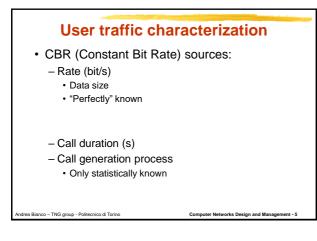


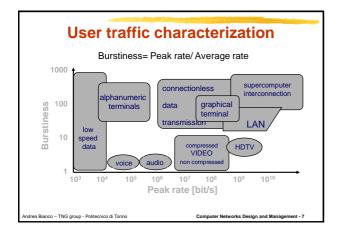
Quality of service

- · What is the meaning of quality of service?
- · Different definitions
- · We use the term mainly to describe performance seen by user traffic
 - Define indices to describe quality
- · Examples of indices describing quality of service:
 - Speed (in bit/s), throughput, bit rate, bandwidth
 - Delay (average, percentile, maximum, variance, jitter)
 - Loss probability
 - Error probability
 - Blocking probability
 - Fault probability or availability - Recovery time after a fault


 - Many others (time needed to open a connection, costs and tarifs ...) - TNG Computer Networks Design and Ma


Quality of service

- · Different types of traffic require attention to different indices of quality
 - Phone calls (human voice)
 - · Guaranteed fixed bit rate
 - · Low delays
 - · Low blocking probability
 - Data traffic
 - · Low or negligible loss probability
- · Provide QoS in an heterogeneous environment is more difficult (traffic heterogeneity)
- · Provide QoS to unpredictable traffic is more difficult (traffic characterization)


Computer Networks Design and M

ea Bianco – TNG group - Politecnico di Torino

Quality of service

- · Networks used as examples
 - Fixed telephone network: POTS
 - Internet
 - B-ISDN

a Bianco – TNG group - Politecnico di Torino

· Let's start by describing in an informal way the quality of service provided by these networks

POTS

· Characteristics

a Bianco – TNG group - Politecnico di Torino

- CBR source completely known (generated by the network)
- Circuit switching
- Constant, dedicated bit rate ⇒ no congestion
 Minimum possible delay (only propagation): order of tens of ms (real time) Zero loss probability
 Error probability smaller than few %
- Small or negligible blocking probability
- QoS largely independent on other users (apart from blocking probability)
- Network utilization can be really low, user satisfaction very high

Computer Networks Design and M

Internet • Characteristics - Source behavior unknown - Packet switching with datagram service • Complete sharing of network resources • Bit rate and delay unknown • Possible congestion • Loss probability may be significant - Error probability negligible in wired networks - Zero blocking probability • QoS largely dependent on other users • Network utilization can be very high_user

 Network utilization can be very high, user satisfaction can be very low

ndrea Bianco – TNG group - Politecnico di Torino

B-ISDN

- · Intermediate situation
 - Source known (either deterministically or statistically)
 - Packet switching with virtual circuit service
 - May introduce algorithms to control network resources sharing
 - Bit rate and delay negotiableLoss probability negotiable
 - Blocking probability reasonably small
 - Error probability negligible
- QoS dependent on other user behavior and on algorithms used to manage network resources
- Trade network utilization and user satisfaction

Computer Networks Design and Mana

rks Design and Mana

Quality of service

· Design problem

- TNG group - Politecnico di Torino

- Given:
 - Network topology (nodes, link speed)
 - Traffic characterization
- User behaviour
- Jointly obtain:
- Guaranteed QoS for each user connection
- High network utilization
- Without the objective of high network utilization, the problem becomes trivial
 - overprovisioning (power line or water distribution network)

ndrea Bianco – TNG group - Politecnico di Torino

Design to obtain QoS

- · Different time scale (with different level of complexity)
- Network design and planning (resource deployment)
 - Possible re-design and re-planning
 - On the basis of traffic estimates and cost constraints
 - Exploits routing criteria and traffic engineering
- Network management (running a network) - Measurements
 - Fault management (protection and restoration)
 - May include simple re-design and re-planning
- Connection management
- Data unit transport

orks Design and Mana nt - 13

Our definition of QoS

- · Assume that a network has been designed and is properly managed
- Available resources are given Mainly study algorithms operating at the following time-
- scale
- Connection management
- Data unit transport
- Also named traffic control problem
- Must define what is meant by connection. Also named data
- classification problem.
- Two different traffic control principles:
 - Preventive control : mainly executed at network ingress, with fairly tight traffic control to avoid congestion insurgence in the network

 - Reactive control: react when congestion situation occur, to reduce or eliminate congestion negative effects TNG group-Policenico of circlon

Traffic control: essential elements Connection oriented network

- · User-network service interface
 - Traffic characterization
 - QoS negotiation
- · Resource allocation (bit rate and buffer)
- Algorithms for traffic control
- CAC (Connection Admission Control) and routing - Scheduling and buffer management (allocation, discard)
- in switching nodes Conformance verification (policing or UPC: Usage Parameter Control)
- Traffic shaping to adapt it to a given model
- Congestion control

a Bianco – TNG group - Politecnico di Torino

Traffic control:

connection oriented network

- The connection oriented paradigm permits to know which are the network elements over which traffic control algorithms must be executed (path known)
 – Circuit switching
 - Packet switching with virtual circuit service
- If high utilization is a major objective:
 Packet switching
- As such, the most suited switching technique to obtain QOS is packet switching with virtual circuit service

Computer Networks Design and Mana

drea Bianco - TNG group - Politecnico di Torino

Traffic control:

user-network service interface

- The capability to control the network increases with the knowledge of user traffic. Limiting factor is the complexity.
- Over the service interface
 - Traffic characterization
 - QoS parameters negotiation
- · Can be defined on a call basis or on a contract basis
- · POTS: implicit, on a contract basis
- · Internet: not existing
- · Frame relay: negotiable, normally on a contract basis
- B-ISDN: negotiable with traffic contract on both contract and call basis
- Internet extended to support QoS: negotiable through a SLA (Service Level Agreement) mainly on a contract basis Computer Networks Design and Management - 17

Traffic control: resource allocation

· Main resources:

- Bit rate over transmission links
- Buffer
- · Resources can be allocated
 - On a contract basis (booking)
 - On a call basis
 - Packet by packet
 - Allocation
- Allocation
 - Exclusive (dedicated resource)
 - Shared

Andrea Bianco – TNG group - Politecnico di Torino

outer Networks Design and Management - 18

Algorithms: CAC and routing

- Routing
 - QoS based path selection to router a connection
- CAC
 - Determine whether to accept a connection or not, depending on The path chosen by the routing algorithm
 Traffic characterization

 - QoS requests · Network status
- Constraints
 - It is not acceptable to destroy or even reduce the quality of service guaranteed to already accepted connections ⇒
 Can be relinquished

Computer Networks Design and Mana

- Connection must be refused to avoid network overload or congestion
- Preventive control (but can become reactive)

a Bianco – TNG group - Politecnico di Torino

Algorithms: scheduling and buffer management

- Scheduling
 - Choice of the data unit to be transmitted among data unit stored in the switch
- · Buffer management
 - Allocation (partial/total, exclusive/shared) of memories in the switch
 - Dropping policies
- · Mandatory in an heterogeneous environment to support different QOS requests
 - FIFO (First In First Out) or FCFS (First Came First Served) policy
 - with drop-tail discard is optimal in a homogeneous environment - Counter for less than 10 pieces at supermarket

Co

vorks Design and M

· Preventive and reactive

a Bianco – TNG group - Politecnico di Torino

Algorithms: policing e shaping

- · Policing (traffic verification) Network control of user behavior to guarantee conformance to traffic
- characterization
- · Shaping (traffic conditioning)
 - User/network adaptation of data traffic to make it conformant to a given characterization
- · Mandatory to control user honesty and to adapt traffic which is difficult to generate as conformant a priori
- · Where algorithms must be executed?
 - Only at network edge, i.e., when user access network?
 - Multiplexing points modify traffic shape
 - · Both at network access and internally to the network (UNI and NNI)
- · Mainly preventive, but they can become reactive if QoS

level may change over time co – TNG group - Politecnico di Torin

Computer Networks Design and Manage

Algorithms: congestion control

- Congestion
 Traffic excess over a given channel (link)
- · Can occur due to
 - Short term traffic variability
 - Allocation policies that share resources to increase network utilization
- · Congestion effects:
 - Buffer occupancy increase

co di Torino

- Delay increase
- Data loss
- · Needed to obtain high link utilization
- Must execute at network edge, within the network or....?
- · Reactive Rianco – TNG a

Computer Networks Design and Manage ent - 22