Data distribution: the P2P approach(es)

Andrea Bianco (Thanks to Michela Meo) Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 1

Peer-to-peer architecture

- Peers (hosts running the app) contribute to service provisioning
- All peers have the same role
- Peers are at the same time servers and clients, i.e., they both use and provide service
- The resources needed to provide service are at the periphery of the network, in the hosts
- Resources can be:
 - contents
 - computation/storage
 - bandwidth

Andrea Bianco – TNG group - Politecnico di Torino

The overlay network

• The overlay network among peers allows to put together the resources at the network periphery (in the hosts)

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 3

The overlay network

- Nodes in the overlay network are peers: hosts running the application
- Links in the overlay network are logical links at the application level
- A logical link at the application level requires that two peers know each other:
 - Both are running the application
 - Know their contact information: IP address and port number
 - If the logical links use TCP at the transport layer, they must have opened the TCP connection
- Two peers with a logical link are neighbors

Andrea Bianco – TNG group - Politecnico di Torino

P2P systems: motivations

- Scalability:
 - P2P approaches scale well with respect to the number of users, i.e., they work and are efficient even under extremely large number of users
 - When the number of peers grows, both the amount of work and the service provisioning grow
- · Cost reduction:
 - Resources are (partially) deployed by users
 - No (or limited) need for infrastructure

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 5

Peer-to-peer systems

Examples of possible applications

- File sharing:
 - Peers share their contents, the P2P system allows to retrieve contents that are in the peers
- Content distribution:
 - Peers contribute to the distribution of contents (of big size) of interest to a large population of users
 - Peers use their **bandwidth** for the content distribution
- Distributed computing:
 - Peers use their computational power for a common goal

Issues at the application level

- Some issues are related to churning: – on/off unpredictable behavior of users
- System resources are highly variable (depend on the users' participation):
 - total amount varies
 - position in the overlay varies
- Resource discovery is not easy
- · Connectivity varies in time
- NAT traversal and firewalling obstacles

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 7

Issues at the ISP level

- Need to adequate network design
 - from asymmetric traffic profiles (more capacity on the downlink than on the uplink) to more symmetric
- Potentially very large amounts of traffic, often difficult to control
- Protection of the network from systems that bypass firewall/NAT control
- Competitive services

Issues at the user level

- Risks for the user's system that related to opening the system (malware, spyware, viruses, ...)
- Content availability
- Privacy issues
- Some legal aspects can arise for applications distributing contents that are covered by copyright

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 9

Peer-to-peer systems

- Based on the overlay network topology, we distinguish P2P systems in
 - Unstructured systems:
 - The overlay topology is not regular, it is randomly created according to rules for the overlay creation and maintenance
 - Structured systems:
 - The overlay topology has a regular topology that is predefined (grid, ring, tree, ...)
- P2P architectures can be
 - flat: all peers are in charge of the same functions
 - hierarchical: different functions for the peers

File sharing applications

- · Users share their contents
- When many peers participate, many contents are shared: demand for service grows with the number of users, but the availability of contents also grows
- · File sharing is the first case of P2P system
- Started with very successful music sharing applications (Napster)
 - Operated in1999-2001
 - Reached 80 milions of users
 - Sued by the Recording Industry Association of America (RIAA), Napster had to close

Andrea Bianco – TNG group - Politecnico di Torino

```
Computer Networks Design and Management - 11
```


Andrea Bianco – TNG group - Politecnico di Torino

Andrea Bianco – TNG group - Politecnico di Torino

Napster: assessment

- · Scalability, fairness, load balancing
 - Replication to querying nodes
 - Number of copies increases with popularity
 - Large distributed storage
 - Unavailability of files with low popularity (no guarantee)
- Content location
 - Simple, centralized search/location mechanism
- Failure resilience
 - No dependencies among normal peers
 - Index server as single point of failure

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 15

Functions in P2P file sharing

- **Join**: a peer enters the overlay network and starts participating to the system
- Overlay maintenance: take care that the overlay is properly connected so as to guarantee the properties that are needed for the correct working of the system
- **Query**: a peer queries for a content and retrieves information on the peers holding it
- **Download**: a peer downloads the content it was looking for

Gnutella

- Program for sharing files over the Internet

 Peers share their file
- Purely distributed approach, no centralized point, no infrastructure → get rid of the central index (see Napster)
- The overlay network is used to implement the query function
- Download is done on a point-to-point basis, once the content is found through the query function

Andrea Bianco – TNG group - Politecnico di Torino

```
Computer Networks Design and Management - 17
```


Andrea Bianco - TNG group - Politecnico di Torino

Overlay maintenance

Overlay maintenance

- After JOIN, peer A is connected to the overlay
- Its connectivity is very limited (only 1 connection to B)
 Overlay update and maintenance is needed ING

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 20

G

Overlay maintenance

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 21

Overlay maintenance

- PING forward continues up to H hops away from the peer that initiated the process
 - Implemented with a TTL field, decremented at each forwarding
- Messages have an ID to
 - Avoid reacting to duplicates of the same request
 - Duplicates are dropped
- PONG messages follow the reverse path of the corresponding PING
 - They can cross only logical links of the overlay network

Overlay maintenance

- PING/PONG messages exchange allows to:
 - Verify connectivity of neighbors
 - Receive contact information of other peers that are in the overlay
- Connectivity can be updated/adjusted once PONG messages are received
- Peer discovery is
 - very effective: in a short time many PONGs are received
 - very costly for the network: huge number of PING and PONG messages

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 23

Overlay maintenance

- Assuming
 - k neighbors (constant) per peer
 - up to H forwarding of PING messages
- Number of PING messages (and contacted peers):

$$N = \overset{H-1}{\overset{i}{\stackrel{}}_{i=0}} k(k - 1)^{i}$$

Number of PONG messages

$$M = \overset{H-1}{\overset{\circ}{\underset{i=0}{\otimes}}}(i+1)k(k-1)^{i}$$

• Average time to contact N peers: Number of PONG messages:

$$T = T_{c}H$$

with Tc, average contact time Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 24

N=4372

Query

- Peers may receive several positive replies to a QUERY and choose where to download from
- QUERY has ID and TTL (like PINGs)
- · The searching mechanism is
 - very effective: in a short time many peers are contacted
 - probability to find the content depends on popularity and it is not guaranteed for little popular contents
 - flooding is very costly for the network, requires many messages

Query

· Assuming that

- peer A queries for content C
- k neighbors (constant) per peer
- up to H forwarding of QUERY message
- popularity of C is p (probability that a peer holds content C)
- Prob. that C cannot be found:

$$P = (1 - p)^{L}$$

with L equal to the number of contacted peers:

$$L = \mathop{\stackrel{}{\overset{}}{a}}_{i=0}^{H-1} \mathbf{k} (\mathbf{k} - \mathbf{1})^{i}$$

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 27

Andrea Bianco – TNG group - Politecnico di Torino

Gnutella: Assessment

- · Scalability, fairness, load balancing
 - Replication to querying nodes
 - Number of copies increases with popularity
 - Large distributed storage
 - Unavailability of files with low popularity
 - Bad scalability, uses flooding approach
 - Network topology is not accounted for at all, latency may be increased
- Content location
 - No limits to query formulation
 - Less popular files may be outside TTL
- Failure resilience
 - No single point of failure
 - Many known neighbors
 - Assumes quite stable relationships

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 29

BitTorrent objectives

- Download
 - large contents (movies, OS updates,...)
 - to large populations of users
 - "flash crowd" scenario
- Users' contribute by becoming content distributors while downloading the content
- Users contribute to the service through their upload bandwidth
- Reduction of cost for the content distributor

Content distribution

Andrea Bianco - TNG group - Politecnico di Torino

alleviates burden on the

Computer Networks Design and Management - 31

P2P vs. Client-Server

Andrea Bianco – TNG group - Politecnico di Torino

Content transfer model

- Simple model
 - Each peer serves only one peer at a time
 - The unit of transfer is the content
 - n peers want the content
 - We assume n=2^k
 - T is the time to complete an upload
 - T=s/b, s content size, b upload capacity (for each peer)
 - Global knowledge, always know which peers need the content

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 33

Capacity growth

Andrea Bianco - TNG group - Politecnico di Torino

Model discussion

- · Each peer has the same upload capacity
- No network bottleneck
- Idealized peer selection strategy
 - Each peer always knows to which peer P send the content at a given time
 - Peer P does not have the content yet
 - · Peer P is not chosen by any other peer
 - Conflict resolution solved with global knowledge
 - No peer churning, i.e., arrival and departure

Capacity grows with time

- Effectiveness of the P2P approach grows
- First part of the transfer is the most fragile one
 - few copies of the content
 - only few "servers"
- Service capacity depends
 on
 - Availability of content
 - Presence of interested peers

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 37

Capacity growth

- In this distribution tree, not all the peers contribute in the same way
- Leaves in the distribution tree do not use their upload bandwidth → split the content in pieces so that different distribution trees are created to distribute in parallel the many pieces
- Peers contribute if they don't leave the system once they have downloaded the content (free riders)

Andrea Bianco – TNG group - Politecnico di Torino

Content transfer model

- What about distributing the content to more than one peer at the same time?
 - Each peer serves two peers at a time
 - The time to complete an upload
 - T'=s/(b/2)=2s/b, s content size, b upload capacity
 - T'=2T,
 - double time needed to complete the upload with respect to the previous case

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 39

Discussion

- The model suggests to
 - Divide the content in pieces
 - Transfer one piece at a time
 - Carefully choose peer and piece selection strategies
- P2P is very efficient when
 - There is always a peer to send data to
 - There is always a piece to send to this peer
- Peer and piece selection strategies are at the core of an efficient P2P protocol

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 41

BitTorrent

- It is a P2P system for file sharing:
 - It uses a P2P approach for the download
 - Query is solved outside the P2P distribution process
 - Overlay maintenance is done through a dedicated device (in a distributed way in some cases)
- There exists no single BitTorrent network, but thousands of temporary networks (*torrents*) consisting of clients downloading the same file
- There exist many different BitTorrent clients:
 - The java based client Azureus is one of the most popular

Data distribution in P2P systems

Terminology

- Seeder
 - A peer who has all the blocks in a torrent
- Leecher
 - A client who is downloading from the seeders
- Chunk
 - A piece of a file typically 64 KB to 256 KB in size
- Tracker
 - A middleman who informs the peers of the other peers in the network
- Torrent
 - A group of peers that are connected to the same tracker and downloading the same file
- Torrent file (.torrent)
 - A file which provides a URL to the tracker and contains a list of SHA1 hashes for the data being transferred
- Choked
 - A connection is choked if no file data is passed through it
 - Control data may flow but the transmission of actual blocks will not
- Interest
 - indicates whether a peer has blocks which other peers want

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 43

Operation summary

- The original file distributor
 - publishes details of the file on a web server, and
 - creates a tracker that allows peers interested in the file to find each other
- To download the file, peers access the tracker and join the torrent
- The file is divided into equal-sized blocks (typically 32-256 KB) and nodes download concurrently the blocks from multiple peers
- The blocks are further subdivided into sub-blocks to enable pipelining of requests to mask the request-response latency
- As a peer downloads blocks of the file, it also uploads to other peers in the torrent blocks that it has previously been downloaded

Andrea Bianco - TNG group - Politecnico di Torino

Detailed operation

- · Nodes in the system are either
 - seeders: nodes that have a complete copy of the file and are willing to serve it to others or
 - leechers: nodes that are still downloading the file but are willing to serve the blocks that they already have to others
- When a new node joins a torrent, it contacts the tracker to obtain a list containing a random subset of the nodes currently in the system

 both seeds and leechers
- The new node then attempts to establish connections to many (about 40) existing nodes, which become its neighbors
- If the number of neighbors of a node ever dips below a threshold (e.g., 20) due to churning, the node contacts the tracker again to obtain a list of additional peers it could connect to

Andrea Bianco - TNG group - Politecnico di Torino

Overall architecture

Overall architecture

The Torrent file

- The torrent file has all necessary information for a peer to download a file
 - URL of the tracker
 - Fileinfo (considering only one file)
 - Name of the file
 - Piece length/size
 - File size
 - SHA1 hashs of each piece
 - File ID is generated as SHA1 hash of the fileinfo

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 53

Tracker

- The tracker receives information of all peers
- The tracker provides random lists of peers, when needed (join, increase of connectivity)
- · Single point of failure
 - New versions of BitTorrent can use a DHT for receiving other peers information (trackerless)
- Request consists of:
 - File ID
 - Peer ID
 - Peer IP
 - Peer Port
- · Tracker response contains:
 - Interval: number of seconds between normal requests
 - List of peers (i.e., 40 peers) containing ID, IP and Port of each peer
- · Peers may re-request on nonscheduled times, if they need more peers

Andrea Bianco - TNG group - Politecnico di Torino

Requirements for the Tracker

- The requirements from the Web hosting end are not too much
- To transmit a torrent, it is needed only a standard HTTP Web server and a free program called a "tracker"
- The tracker's job is:
 to keep track of which clients can serve which files to other clients
- · At the tracker traffic load is relatively light
- Offering a tracker to customers can make using BitTorrent to distribute contents a much simpler process for both the content distributor and the customers

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 55

Pieces and blocks

Content is split into pieces, which are split into blocks

Content

Andrea Bianco - TNG group - Politecnico di Torino

Pieces and blocks

- Pieces
 - The smaller unit of retransmission
 - Typically 256/512/1024/2048 kByte
 - Size adapted to have a reasonably small .torrent file
 - One SHA-1 hash per piece in the .torrent file
- Blocks
 - 16kB (hard coded)
 - Used for pipelining
 - · Always 5 requests pending

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 57

Andrea Bianco – TNG group - Politecnico di Torino

Peer protocol

- Each downloader reports to all of its neighbors what pieces of the file it has
- · Peers download pieces from all peers they can
- Peers upload to other peers accordingly to the **Tit-for-tat** (choking) algorithm
 - peers are selected based on their contribution to file download
- Piece selection: local rarest first
 peer downloads the piece which the fewest of its peers has first
- · To avoid delays between pieces that lower transfer rates
 - splits pieces into sub-pieces
 - always having some number of sub-pieces requests pipelined
 - completes a piece before requesting sub-pieces from other pieces

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 59

BitTorrent algorithms

- Two components in BitTorrent downloading algorithms:
- Peer Selection determines from whom to download the piece
- Piece Selection determines which piece to download

Tit-for-tat algorithm

• Objectives:

- Limit the number of concurrent uploads
- Reduce free riding
- Incentivate peers to contribute to content upload
- A neighboring peer can either be:
 - Choke (blocked): cannot download from the peer
 - Unchocked (unblocked): download from the peer is allowed
- A peer always unchoke a fixed number of peers (typically 4)
 - which peers to unchoke is based on current download rate from that peer

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 61

Tit-for-tat algorithm

- A peer recalculates which peers to choke or unchoke every 10 seconds by
 - creating an ordered list of its neighbors based on the download rate from them
 - the 3 peers that contributed the most are unchoked (upload to them is possible)
 - 10 s is:
 - enough time for TCP to achieve full transfer capacity
 - avoids oscillations (no rapid change of choke and unchoke)
- In addition, every 40 seconds: optimistic unchoke
 - unchokes a random peer, regardless of its current download rate
 - which peer to optimistic unchoke is rotated every third rechoke
 - · enough time for upload and download to achieve full transfer capacity
 - enough time for the unchoked peer to reciprocate

Andrea Bianco – TNG group - Politecnico di Torino

Tit-for-tat algorithm

- Seeders, that do not need to download any piece, choose to unchoke the fastest downloaders
- The choking algorithm is the main driving factor behind BitTorrent's fairness model:
 - a free-rider will eventually get low download rates
 - lack of cooperation results in being choked from most other peers
- Choking algorithm penalizes peers at the beginning of the content download
 - They cannot contribute because they have no pieces to upload

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 63

BitTorrent - Piece selection

- · Local rarest first policy
 - Determine the piece that is the most rare among neighbors and download that one first
 - Ensures that the most common pieces are left till the end to download
 - Rarest first also reduces the possibility that pieces disappear
- Rationale
 - Cannot maintain the state for all peers
 - The initial seed should send as fast a possible a first copy of the content

- Improve the entropy of the pieces
 - Peer selection is not biased
 - Better survivability of the torrent
 - · Even without a seed the torrent is not dead
- Increase the speed at which the initial seed delivers a first copy of the content
 - The seed can leave early without killing the torrent

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 65

Random first piece

- Random first piece makes more likely to complete the first piece faster
- Not optimal, but a good tradeoff between simplicity and efficiency (the random piece may be a rarest one)
- Only impacts the startup phase of a peer
- Then switches to local rarest first

Sub-blocks

- BitTorrent uses TCP and it is thus crucial to always transfer data or else the transfer rate will drop because of the slow start mechanism
- The pieces are further broken into sub-pieces, often about 16kb in size (very small)
- The protocol makes sure to always have some requests (typically five) for sub-pieces pipelined at any time
- When a new sub-piece is downloaded, a new request is sent
- Sub-pieces can be downloaded from different peers
- A new piece is requested only when all sub-pieces of another piece are downloaded

Andrea Bianco – TNG group - Politecnico di Torino